Ecocatalysis: Harnessing Phytoextraction for Chemical Transformations

Ecocatalysis: Harnessing Phytoextraction for Chemical Transformations

By Karlee Bamford, Treasurer for the GCI

What is ecocatalysis? I had never heard this term before until reading a recent publication from Grison and coworkers in the RSC journal Green Chemistry entitled “Ecocatalyzed Suzuki cross coupling of heteroaryl compounds”.1 In this work, the authors perform the familiar Suzuki cross-coupling of arylboronic acids (Figure 1) with heteroaryl halides. However, they use a thoroughly unfamiliar palladium catalyst: the common water hyacinth (Figure 2).


Figure 1. The general reaction for Suzuki cross-coupling  (Ar = substituted phenyl, thiophene, or indole groups).


Figure 2. The common water hyacinth (Eichhornia crassipes). Credit: Richard A. Howard, provided by Smithsonian Institution, Richard A. Howard Photograph Collection (Montréal, Canada). [2]

In broad terms, ecocatalysis is the use of plant-derived, metal-based catalysts in chemical reactions. If it were not for the author’s graphical abstract illustrating the plant body performing catalysis, I would have assumed that this was a more standard bioinorganic paper featuring a plant extract as catalyst. While the propensity of certain plants and microbiota to uptake (“phytoextract”) particular contaminants has long been used in waste water purification, for example in the uptake of inorganic phosphates (e.g. [PO4]3-),3 ecocatalysis represents a clever progression from plants being used in chemical sequestration to chemical transformation.

Plants currently used in phytoremediation, that is, the removal of contaminants such as heavy metals from anthropogenically polluted environments, could clearly be used in the production of ecocatalysts.4 One current use for such metal-laden plants is in phytomining as so-called bio-ore.5 This metal extraction process ultimately results in the majority of the plant bio-mass being wasted through the energy-consumptive process of incineration, whereas an ecocatalyst such as EcoPd requires that same bio-mass as a kind of ligand support.

Grison and colleagues report reaction times, conditions, and yields (typically >90 %) for their “EcoPd” catalyst that are competitive with typical Suzuki cross coupling experiments and catalysts, both homogenous and heterogeneous. Remarkably, the primarily root-based EcoPd catalyst can be reclaimed and reused without loss of activity, as the authors demonstrated in a control study that involved recycling the catalyst four times over. Finally, the palladium content of the used catalyst can be quantitatively recovered by rhizofiltration, that is, by returning the elemental palladium obtained in post-synthesis work-up to a new plant specimen for metal uptake. In practical terms, this involves filtering the post-synthesis solution, dissolving the isolated solids with aqua regia, and diluting the resultant palladium-containing solution with water before reintroducing it to the roots of E. crassipes.

Ecocatalysis is an entirely new and emerging field of chemistry (circa 2013) being pioneered by Grison and coworkers at The Laboratory of Bio-inspired Chemistry and Ecological Innovations (University of Monpellier) in France. Their research has furnished several other noteworthy ecocatalysts (EcoM’s) featuring nickel (EcoNi),6 zinc (EcoZn),7 manganese (EcoMn),8 copper (EcoCu),9 which have proven effective in Biginelli, Diels-Alder, reductive amination, and Ullmann reactions, respectively.

This new approach to catalysis is not only charmingly novel – at least to a non-bioinorganically-minded chemist such as myself – but it also offers a real solution to the problematic dependence of catalysis on pure precious metals. The plants themselves provide a means for both harvesting and using low-abundance metals in a format that does not require complicated ligand design and is consistent with homogenous catalysis. Clearly, EcoPd and other such EcoM may not be suitable replacements in every metal-catalyzed transformation, but they nonetheless provide a new avenue for recycling precious metals and realising catalyst sustainability.

The range of possible ecocatalysts is, in my mind, astounding. Plant species that are known to preferentially accumulate heavy metals, known as accumulators and hyperaccumulators, are greater than 500 in number and sequester metals from across the p- and d-block of the periodic table, each to varying extents.10 As the tolerance and preference for certain transition metals is in part gene-regulated,11 it is conceivable that genetic modification and controlled environmental conditions could in the future yield heavy metal-specific plant species for sequestration and, perhaps, subsequent ecocatalysis.



  1. G. Clavé, F. Pelissier, S. Campidelli and C. Grison, Green Chemistry, 2017, DOI: 10.1039/c7gc01672g.
  2. Used with permission from Larry Allain, hosted by the USDA-NRCS PLANTS Database.
  3. J. Lv, J. Feng, Q. Liu and S. Xie, Int. J. Mol. Sci., 2017, 18.
  4. C. Grison, Environmental Science and Pollution Research, 2015, 22, 5589-5591.
  5. R. R. Brooks, M. F. Chambers, L. J. Nicks and B. H. Robinson, Trends in Plant Science, 1998, 3, 359-362.
  6. C. Grison, V. Escande, E. Petit, L. Garoux, C. Boulanger and C. Grison, RSC Adv., 2013, 3, 22340.
  7. V. Escande, T. K. Olszewski and C. Grison, Comptes Rendus Chimie, 2014, 17, 731-737.
  8. V. Escande, A. Velati, C. Garel, B.-L. Renard, E. Petit and C. Grison, Green Chemistry, 2015, 17, 2188-2199.
  9. G. Clavé, C. Garel, C. Poullain, B.-L. Renard, T. K. Olszewski, B. Lange, M. Shutcha, M.-P. Faucon and C. Grison, RSC Adv., 2016, 6, 59550-59564.
  10. H. Sarma, Journal of Environmental Science and Technology, 2011, 4 118-138.
  11. S. Jan and J. A. Parray, Approaches to Heavy Metal Tolerance in Plants, Springer Singapore, Singapore, 2016.
ACS Summer School on Green Chemistry and Sustainable Energy 2017

ACS Summer School on Green Chemistry and Sustainable Energy 2017

By Samantha Smith, Yuchan Dong, and Shira Joudan

Yuchan Dong, who previously studied in China, had begun to miss life with roommates while in Canada. She reminisced about how you could talk about your lives late into the night, and spend meals chatting with friends in the cafeteria. “Luckily, at the ACS summer school, [she] got the chance to experience such life again and got to know a lot people who share same interests.” The summer school brought us back to the more carefree times of our undergraduate lives. Living in dormitories, sharing a floor with fifty-two other highly educated students, sharing every meal with our newly-formed friends, and even tackling homework assignments were just like the “good old days”. The level of diversity strengthened the value of peer-networking and real friendships were made throughout the week.

ACS Summer School blog1

The week wasn’t just filled with relaxing chats in the Colorado sun; that was merely how we spent our free time. The days were jam-packed with riveting lectures during the day, assignments in the evening, and getting to know the local Golden beers at night (which was obviously a duty of ours as tourists). We also had the chance to take in the local scenery with hikes and whitewater rafting.

The ACS summer school on green chemistry is a competitive program offered to graduate students, post-doctoral fellows, and industry members every year in Golden, Colorado. Hosted by the Colorado School of Mines, the program consists of five days of lectures from green chemistry and sustainable energy experts, two poster sessions, a whitewater rafting trip, and lots of opportunity for networking. This program teaches global sustainability challenges with a focus on sustainable energy. The ACS Summer School is free of charge for successful attendees, including travel, accommodation on campus, and meals.


Samantha, Yuchan, and Shira at the ACS Summer School

Jim Hutchison, a professor at the University of Oregon, spoke about how his department has completely reformatted their undergraduate chemistry curriculum to contain green and sustainable chemistry, something that particularly sparked Shira’s interest as lead of GCI’s Education Subcommittee. Bill Tolman, Chair of the University of Minnesota Chemistry Department, shared how students successfully cultivated the safety culture within his department. This had inspired Samantha to create new initiatives within our chemistry department. Queens University’s Professor Philip Jessop taught us about Life-Cycle Analysis (LCA) and assigned us multiple processes for which we calculated the gate-to-gate LCA. Mary Kirchhoff and David Constable from ACS gave talks on green chemistry and ACS resources, many of which would be useful to other departments. The format of the summer school allowed plenty of time to chat with the guest lecturers during coffee breaks, lunches, and poster sessions.

Many real-world issues were discussed. The worldwide energy usage and sources of energy were a main topic of discussion, as was the use of alternative sources. We were blown away by how multi-disciplinary green chemistry is, and we were enlightened on how we need experts in all fields to successfully create sustainable chemistry. We learned that to be able to effectively tackle environmental issues we need great synthetic chemists, whether they specialize in organic, materials or catalysis, as well as analytical chemists, engineers, environmental chemists, and toxicologists. We also need effective entrepreneurs and lobbyists.

Nearing the end of the summer school, a large group of us hiked up Tabletop mountain to get the most amazing view of the valley. A warm feeling of appreciation towards the summer school for bringing us out of the isolation of individual research in the busy city life was shared. We would like to thank ACS for giving us the chance to attend this amazing week. This experience has truly been beneficial to us, and we plan to use the knowledge gained during the week in our own studies as well as pass this knowledge on to our coworkers at the University of Toronto.

ACS Summer School blog 4_image2

Tabletop mountain in Golden, CO

We highly encourage anyone interested in green chemistry and sustainability to attend this beneficial program. Application deadlines are early in the year and submitted online. The application consists of the applicant’s CV, unofficial transcript, letter of nomination from faculty advisor or another faculty member, and a one-page essay describing your interest in green chemistry and sustainability as well as how it will benefit the applicant.