Boat Antifouling Technology: the problems and the green chemistry solutions!

By Alana Rangaswamy (Vice-President, Dalhousie University Green Chemistry Initiative)

Picture1

The iconic Halifax Ferry is one of many boats to traverse the Harbour every day.

One great part of attending Dalhousie University is living steps away from the ocean. Much of Halifax’s history and development is due to its access to water, both as a naval base and port of call. With the massive amount of boat traffic seen daily by the harbour, marine industries strive to maximize the efficiency of travel. And one major way to do that is preventing small creatures from hitching a ride on your boat, causing drag and lowering the efficiency of your vessel. Enter antifoulants: coatings that kill organisms or otherwise block their ability to stick onto your ship. Antifouling is a necessary technology, but introducing biocidal agents into a marine environment, unsurprisingly, poses many environmental challenges. Let’s take a look at two commonly used antifoulants, their issues, and how scientists have tried to fix them:

Tributyltin 

You may have heard of tributyltin (TBT) as a biocidal agent. TBT is an excellent poison – effectively nonpolar due to its alkyl groups, it’s able to accumulate in organisms, rapidly killing them due to the high toxicity of SnIII. This property makes TBT an extremely effective antifouling agent, however, it easily leaches from boat hull paint into the ocean where it persists due to its high stability. Fortunately, the dangers TBT have been recognized worldwide and use as a biocidal agent has been banned as of 20081. Canada jumped on the bandwagon slightly earlier, with the last TBT-containing paint product registered in 1999.2 With this restriction, the industry is searching for alternatives that are as effective as TBT, without the environmental drawbacks.

Copper

Copper as a bulk metal is naturally antiseptic, promoting the formation of reactive hydroxyl radical species which lead to cell death in living systems.3 Copper has been used on boat hulls since the 1700s, and now usually shows up in paints as its metal oxide4 or as a suspension of copper powder.5 Although copper is less bioavailable than TBT, it persists and continually forms unstable radical species (and can, therefore. wreak ecological havoc) in a marine environment. Since copper is widely considered the new “gold” standard in antifouling, the sheer amount of it present on (and leaching off of) boat hulls today points to a long-term impact.

New Antifouling Tech

Green chemistry and engineering are all about designing cleaner systems that work as well as, or better than, the existing standard. TBT and copper are high bars to clear, but scientists are up to the challenge. As early as 1996, the environmentally benign Sea-Nine antifouling compound had received the Designing Greener Chemistry Award as part of the US EPA’s Presidential Green Chemistry Challenge.6 Sea-Nine is a derivative of isothiazolinone, a 5-membered heterocycle containing nitrogen and sulfur atoms. The compound is acutely toxic to marine organisms at the surface of boats, but biodegrades rapidly in marine environments through a ring-opening mechanism to form non-toxic by-products. Sea-Nine (and its derivatives) is currently present in commercial boat hull paints,7 however, degradation times may vary based on geographical location and local environment8 so our job isn’t done yet.

There are many newer studies in the works. For instance, investigation has been done into using natural products as antifouling agents. Natural products are secondary metabolites produced by microorganisms as a defence mechanism in response to stress. As such, they often have antimicrobial properties, while being naturally biodegradable. For example, 1-hydroxymyristic acid, a simple alpha-hydroxy fatty acid, was isolated from the marine bacterium Shwanella oneidensis. When panels were coated with paint containing the fatty acid, and subsequently immersed in a marine environment, no growth of foulants was observed even after 1.5 years.9 Other studies have added hydrophobic coatings which disrupt the binding interactions between the microorganism and the vessel’s hull, and promote detachment due to the natural flow of the water over the hull.10 Some research has diverted away from chemical modifiers altogether, using microtextures, which remove the flat surfaces required for spores to settle,10 to deter growth. UV-LEDs11 which are mutagenic and cytotoxic at a small scale, have also been used to reduce growth of foulants.

The long history and many methods developed to prevent boat hull fouling demonstrates that this is an important and challenging problem. But many results are promising, and green chemists and engineers are well on their way to solving it.

References:

  1. http://wwf.panda.org/?145704/tributyltin-canned
  2. Health Canada – Consumer Product Safety Registrar

http://pr-rp.hc-sc.gc.ca/ls-re/result-eng.php?p_search_label=antifouling+paint&searchfield1=ACT&operator1=CONTAIN&criteria1=tin&logicfield1=AND&searchfield2=NONE&operator2=CONTAIN&criteria2=&logicfield2=AND&searchfield3=NONE&operator3=CONTAIN&criteria3=&logicfield3=AND&searchfield4=NONE&operator4=CONTAIN&criteria4=&logicfield4=AND&p_operatordate=%3D&p_criteriadate=&p_status_reg=REGISTERED&p_status_hist=HISTORICAL&p_searchexpdate=EXP

  1. Grass, G., Rensing, C., and Solioz, M. Metallic copper as an antimicrobial surface. Environ. Microbiol. 2011, 77, 1541-1547. DOI: 10.1128/AEM.02766-10.
  2. https://www.chemistryworld.com/news/antifouling-coatings-cling-to-copper/3010011.article
  3. http://coppercoat.com/coppercoat-info/antifoul-how-it-works/
  4. https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-1996-designing-greener-chemicals-award
  5. https://www.epaint.com/product/sn-1-antifouling-paint/
  6. Chen, L. and Lam, J. C. W. SeaNine 211 as an antifouling biocide: a coastal pollutant of emerging concern. Environ. Sci., 2017, 61, 68-79. DOI: 10.1016/j.jes.2017.03.040.
  7. Qian, P-Y., Xu, Y. and Fusetani, N. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 2009, 26, 223-234. DOI: 10.1080/08927010903470815.
  8. Salta, M. et al. Designing biomimetic antifouling surfaces. Trans. R. Soc. A, 2010, 368, 4729-4757. DOI:10.1098/rsta.2010.0195
  9. https://www.pcimag.com/articles/104484-marine-fouling-prevention-solution-to-use-uv-led-technology

 

 

 

Advertisements