A New Green Chemistry Metric: The Green Aspiration Level™

A New Green Chemistry Metric: The Green Aspiration Level™

By Samantha A. M. Smith, Member-at-Large for the GCI

Sam_blog 1

Figure 1. Process materials – green mass metric relationships

Green Chemistry Principle number two, Atom Economy, focuses on metrics used to compare the efficiency of a reaction.1 However, Atom Economy doesn’t take into account solvents, reagents such as catalysts, drying agents, energy, or recyclability of any of the materials. Is it reasonable for an industry such as pharma to use such a metric? What about E-factor, which is a measure of process waste and, if “complete” (cEF = complete E-factor), also recyclability of solvents and catalysts? It’s known that the pharmaceutical industry generally has the highest E-factor values compared to petrochemicals, bulk, and fine chemicals, indicating more waste generated per mass of desired product.2 But if you wanted to compare your technology to already implemented pharmaceutical processes, where would you find such information?

Roschangar, Sheldon, and Senanayake created a new metric for such a purpose: the Green Aspiration Level™.3,4 This new metric allows one to compare an ideal process with the average commercial process in terms of environmental impact for the production of a pharmaceutical. Say you have an alternative product to Viagra™ and want to know if its production is more or less impactful. You could apply any of the existing metrics (including yield, atom economy, E-factor, and more, summarized in Table 1 of reference 3), or you could use the Green Aspiration Level™ (GAL). To do so, you determine the waste (Complete Environmental Impact Factor (cEF) or Process Mass Intensity (PMI)) and assess the complexity of the process, and use those to calculate the GAL, and in turn the Relative Process Greenness (RPG). From there, you can consult Table 1 (below) to determine the greenness rating of such a process.4

Waste and Complexity

Waste refers to a simple metric such as cEF or PMI (with reactor cleaning and solvent recycling excluded). Complexity of the process refers to the number of steps with no concession transformations, that is those that do not directly contribute to the building of the target molecules’ skeleton.5 The waste and complexity metrics require that the process starting materials are less than $100 USD/mol for proper comparison.

Green Aspiration Level™

Roschangar and coworkers have collected data on many commercial processes to develop an appropriate metric, and they currently use 26 kg of waste per kg of product as a standard based on their findings. This value is known as the average GAL, or tGAL.3,4

GAL        = (tGAL) x Complexity

= 26 x Complexity

Relative Process Greenness

RPG       = GAL/cEF

This metric is used as the comparison point for processes. The comparison can be done at different stages of development, either early or late development, and then again for those processes that are commercialized. In Table 1, there are minimum RPG values that will associate the process with an appropriate greenness percentile.

RPI         = RPG(current) – RPG(early)

RPG can also be used to determine the improvement of a process. From early development, to late development, to commercialization, the difference in consecutive RPG values will give your Relative (Green) Process Improvement (RPI). In this case, the higher the number the better.

Sam_blog 2

Table 1. Rating Matrix for Relative Process Greenness (RPG) in Pharmaceutical Drug Manufacturing [3]

It turns out the current commercial process for Viagra™ is actually quite efficient and is currently in the 90th percentile, exceeding the commercial average by 143% (RPG). The full process of determining and using this new metric, the Green Aspiration Level™, is described by Roschangar and coworkers in two very in-depth articles.3,4

References

1 Anastas, P. T., Warner, J. C. “Principles of green chemistry.” Green chemistry: Theory and practice (1998): 29-56.

2 Sheldon, R. A., Catalysis and Pollution Prevention, Chem. Ind. (London), 1997, 12–15.

3 Roschangar, F., Sheldon, R. A., Senanayake, C. H., Green Chem. 2015, 17, 752. DOI: 10.1039/C4GC01563K

4 Roschangar, F., Colberg, J., Dunn, P. J., Gallou, F., Hayler, J. D., Koenig, S. G., Kopach, M. E., Leahy, D. K., Mergelsberg, I., Tucker, J. L., Sheldon, R. A., Senanayake, C. H., Green Chem. 2017, 19, 281. DOI: 10.1039/c6gc02901a 

5 Crow, J. M., “Stepping toward ideality”, Chemistry World, accessed July 13th, 2017. URL: https://www.chemistryworld.com/feature/stepping-toward-ideality/5190.article

Figures from Roschangar et al. 2015 reproduced with the permission of the Royal Society of Chemistry.

Advertisements

Green Chemistry at CSC2017 – The 100th Canadian Chemistry Conference and Exhibition

By Kevin Szkop and Alex Waked

This year, the GCI partnered with the Chemical Institute of Canada (CIC), the organizing body of the CSC2017, to be closely involved in various aspects of Canada’s largest chemistry meeting.

In collaboration with GreenCentre Canada and CIC, the GCI organized a Professional Development Workshop as part of the CSC2017 program. This event consisted of four components:

The green chemistry crash course, led by Dr. Laura Reyes. Laura is a founding member of the GCI, and is now working in marketing & communications with GreenCentre Canada.

A case study, led by Dr. Tim Clark, Technology Leader at GreenCentre Canada. The case study gave attendees a unique opportunity to learn about some projects that GreenCentre has been developing and in collaboration with peers, learn how to find applications for new intellectual property (IP) and how to make contacts within relevant companies.

Kevin CSC blog 1

Dr. Tim Clark leading the GreenCentre Canada Industry Case Study

Career panel discussion, sponsored by Gilead, featuring members of academia and industry.

A coffee mixer for an opportunity for informal networking.

 

Supplementary to the Professional Development Workshop, the GCI organized a technical session, co-hosted by the Inorganic, Environmental, and Industrial sections of the conference. This new symposium, entitled “Recent Advances in Sustainable Chemistry”, brought together students, professors, industry, and government speakers to showcase a diverse and engaging collection of new trends in green and sustainable chemistry practices across all sectors of chemistry. Highlighted talks included Dr. Martyn Poliakoff from the University of Nottingham, also a CSC2017 Plenary Lecturer, Dr. David Bergbreiter from Texas A&M University, and Dr. William Tolman from the University of Minnesota.

Kevin CSC blog 2

Dr. Martyn Poliakoff teaching the audience about NbOPO4 acid catalysts found in Brazilian mines

Dr. Bergbreiter’s lecture was an engaging one. His enthusiastic approach to the use of renewable and bio-derived polymers as green solvents was captivating to both industrial and academic chemists.

Dr. Martyn Poliakoff, a plenary speaker at the conference, gave a phenomenal talk during the first day of the symposium. His charismatic style complimented perfectly the cutting-edge research ongoing in his group at the University of Nottingham. Particularly interesting was the use of flow processes in tandem with photochemistry to yield large quantities of natural products useful in the drug industries.

Dr. Tolman’s talk was of interest to essentially anyone working in an academic environment, especially for student run groups, like the GCI, with both academic interests as well as safety awareness initiatives. In the first part of the talk, synthetic and mechanistic studies of renewable polymers were discussed. The second part shifted focus to student-led efforts to enhance the safety culture in academic labs, which stood out from most of the other talks in our symposium.

One highlight was a group of graduate students at the University of Minnesota organizing a tour of Dow Chemicals to observe the work and safety codes in an industrial setting, which they used as a lesson to bring back to their own research labs. This caught the eye of most of the GCI members, which inspired us to organize a similar day trip in the future.

In further efforts to make our symposium accessible to undergraduate and graduate students, the GCI partnered with GreenCentre Canada to award five Travel Scholarships to deserving students from across Canada to provide financial aid to participate in the conference.

We thank all of our speakers, both national and international, for their participation in the program. It was a great success!

 

Issues of Sustainability in Laboratories Outside the Field of Chemistry: Pipette Tips

Issues of Sustainability in Laboratories Outside the Field of Chemistry: Pipette Tips

By David Djenic, Member-at-Large for the GCI

As a biochemistry student in the Green Chemistry Initiative, I’m interested in looking at how to implement the principles of green chemistry in molecular biology and biochemistry labs. While molecular biology labs focus more on studying biological systems and molecules rather than synthesizing new molecules, like in synthetic chemistry, there are still problems when it comes to performing environmentally sustainable research.

Pipette tips and pipette tip racks are major contributors to non-chemical waste in biomedical labs because of the volume of tips thrown out and the lack of recycling programs to deal with tips and racks. Pipette tip racks are commonly used because they reduce the risk of contaminating pipette tips. Pipette tip racks are made of #5 plastic (polypropylene), the same material as yogurt cups, medicine bottles and David_blog 1microwavable containers, making them lightweight and very safe to use [1].
However, #5 plastics are rarely accepted by curbside recycling programs and are placed in landfills and incinerators instead [2]. The plastic from the empty polypropylene racks take hundreds, if not thousands, of years to degrade [3].

Biomedical companies have worked in the past 10 years to reduce the amount of waste from pipette tip racks. For example, Anachem, a pipette and pipette tip manufacturing company in the UK, has collaborated with a plastic recycling company to collect racks from qualifying laboratories, ground them down, melt them, and remould into new products [3]. A similar program is run at the Environment, Health and Safety (EHS) division of the National Cancer Institute at Frederick (NCI-Frederick), where, from 2003 to 2006, approximately 8,400 pounds of pipette tip boxes were recycled, saving approximately $7,400 in medical waste contract money [4].

David_blog 2

Pipette tip box waste to be recycled through the EHS program [4].

There aren’t many statistics on the waste produced by the pipette tips themselves. But whenever I’m in a biochemistry lab course, the orange bins where used tips are thrown are filled to the brim with pipette tips, microcentrifuge tubes, Falcon tubes, etc. It is more difficult to reduce and recycle tips rather than tip racks because they are heavily contaminated after use. GreenLabs at the University of Chicago offers some interesting suggestions on reducing pipette waste, such as using pipette tip refills, buying pipette tips made from sustainable material, and generally reducing pipette tip use when possible. However, more research on pipette tip waste is needed to quantifiably analyze the impact of tips and come up with solutions to reduce potential waste.

I think undergraduate biomedical teaching and research labs do apply basic green chemistry principles, even if they are not explicitly brought up. Many of the reactions are done in very small, precise quantities and waste is generally disposed of in the proper place. However, there does not seem to be much exposure, if at all when it comes to green chemistry issues; biochemistry and biomedical students aren’t aware of the environmental impact they generate in labs. Introducing green chemistry education in biomedical laboratories at U of T, especially when it comes to the issue of pipette tips and racks, would help U of T reduce its environmental impact even more.

 

References

[1] http://www.davidsuzuki.org/publications/downloads/2010/plasticsbynumber.pdf

[2] http://earth911.com/home/recycling-mysteries-5-plastics/

[3] http://www.labnews.co.uk/features/consumables-dont-cost-the-earth-01-07-2005/

[4] G. A. Ragan, J. Chem. Health Saf. 2007, 14, (6) 17-20.  http://www.sciencedirect.com/science/article/pii/S1871553206001344

Triclosan: A Controversial Chemical in Your Soap

Triclosan: A Controversial Chemical in Your Soap

By Connie Tang, Member-at-Large for the GCI

Triclosan: it’s in your soap, body wash, and your toothpaste. It can be even found in yoga mats.

Triclosan is an antibacterial agent added to household products. While soap is rarely the centre of a news story, triclosan has garnered significant controversy after the United States Food and Drug Administration (FDA) banned these potentially hazardous chemicals (along with 18 others) from hand soaps.1 Meanwhile, Canada has labelled the chemical as toxic for the environment, and maintained that it does not meet the standard for human health toxicity.2

Connie_blog 1

What is triclosan and where is it beneficially used?

Antibacterial soaps (also known as antimicrobial or antiseptic soaps) contain additional chemicals with the intent of reducing bacterial infection. Triclosan is one of these chemicals and is often used in personal care products, cosmetics, and can even be found in toys, kitchenware, and furniture. In the past two decades, its use has expanded commercially and by the year 2000, triclosan was found in 75% of liquid soaps and almost 30% of bar soaps.3

Antibacterial agents, like triclosan, were originally used in surgical scrubs and hand washes to protect health workers in medical settings from bacteria that can cause infections in hospitals. In surgical units, triclosan is effective against bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), which is resistant to most antibiotics.

Additionally, triclosan can be found in toothpastes, because it has been linked to improved protection against cavities.

In 2008, the Environmental Working Group (EWG) found high levels of triclosan in San Francisco Bay, which prompted studies of this chemical in blood and urine samples of teenage girls to explore its impact on endocrine hormonal processes. Since 2008, the EWG has been submitting reports to the FDA to ban triclosan in personal care products.8

Is triclosan dangerous?

Short answer: Triclosan is most likely harmful to the environment, and possibly harmful to humans.

Environment Canada has categorized triclosan as potentially toxic to aquatic organisms since it bioaccumulates (becomes more concentrated). Even at low concentrations in aquatic plants and animals, it can cause growth reduction and decreased reproduction, impacting survival. Triclosan’s structure is similar to thyroid hormones, so scientists have suggested triclosan’s mechanism of toxicity might involve binding to hormone receptors, impacting hormone functions.4

Connie_blog 2

Animal studies with triclosan have shown that mice exposed to antibacterial ingredients were more likely to develop liver cancer.8 Another study exposed triclosan to pregnant rats9 and found their hormone (progesterone, estradiol, testosterone) levels dropped, potentially affecting fetal development. Triclosan can interfere with normal thyroid hormone functions,10 raising concerns about reproductive impacts. However, no definitive study has proven how harmful triclosan is to humans.11

Triclosan is also persistent, meaning that it does not degrade easily.12 Once it is washed down the drain, most wastewater treatment plants cannot effectively filter out triclosan, and it enters our Great Lakes and waterways.

Lab studies with triclosan suggest it can randomly generate mutations in bacteria.13 This will likely lead to increasing antibiotic resistance in bacteria, creating “superbugs” and decreasing the effectiveness of antibiotics.

Why was triclosan (one of 19 active ingredients) banned in soaps by the FDA?

The FDA banned triclosan and other ingredients from soaps, because there is no compelling evidence the ingredients are safe.1 In 2013, the FDA asked manufacturers to submit evidence that antibacterial ingredients are safe for long-term use and more effective than regular soap at reducing the spread of germs. Neither was proven. Resulting research suggested triclosan and similar agents might be harmful.

“Consumers may think antibacterial washes are more effective at preventing the spread of germs, but we have no scientific evidence that they are any better than plain soap and water,” said Dr. Janet Woodcock, director of the FDA’s Centre for Drug Evaluation and Research in a press release.1

While triclosan is useful in medical settings to protect against bacteria like MRSA, it is not necessary in consumer soaps. So, this ban applies to consumer products, not to antibacterial soaps used in hospitals and food service settings. Products not under the purview of the FDA (like toys, furniture, apparel) are not subject to the ban.

What is Canada’s response?

Health Canada has restricted the amounts of triclosan in mouthwash and personal care products, but has not banned the chemical.2 While concentration limits of triclosan are low (0.03% in mouthwashes, 0.3% in cosmetics),5 even these small amounts will bioaccumulate in our aquatic ecosystems.

Connie_blog 3

The Canadian government has announced that triclosan is not hazardous to human health, but has declared it toxic under the Environmental Protection Act because of its negative effect on aquatic organisms. Environment Canada has flagged triclosan for future assessment.6

Health Canada has said, “The health and safety of Canadians is of utmost importance… The government will continue to monitor new scientific evidence related to triclosan and will take further action if warranted.”

Canada does plan to introduce measures to limit the release of triclosan from consumer products into waterways.6 But this may prove more challenging as this requires manufacturers to develop plans and upgrade for waste-treatment equipment – a costly endeavor.

Many environmentalists and scientists are pushing for Canada to implement a ban of these chemicals in consumer products. In the meantime, should we, as Canadian consumers, refrain from buying antibacterial soaps?

“It really should not be left to the consumers to try to avoid these products, especially given that there is very little benefit to using them,” says Fe de Leon, Canadian Environmental Law Association researcher.7

References

  1. https://www.fda.gov/ForConsumers/ConsumerUpdates/ucm205999.htm
  2. https://www.canada.ca/en/health-canada/services/chemicals-product-safety/triclosan.html
  3. http://blog.nacwa.org/washing-away-triclosan-with-legislation-and-regulation/
  4. http://www.environmentalhealthnews.org/ehs/news/triclosan-and-dolphins
  5. http://www.hc-sc.gc.ca/cps-spc/cosmet-person/labelling-etiquetage/ingredients-eng.php#a4.14
  6. http://www.chemicalsubstanceschimiques.gc.ca/fact-fait/glance-bref/triclosan-eng.php
  7. http://www.cbc.ca/news/technology/ban-antibacterials-triclosan-and-triclocarban-report-says-1.2703095
  8. http://www.ewg.org/release/fda-finally-bans-toxic-triclosan-antibacterial-hand-soaps

Triclosan laboratory studies

  1. Feng, Y.et al. PLoS ONE 11(5).
  2. Yueh, M. F. et al. Proc Natl Acad Sci U S A 2014, 111(48), 17200.
  3. Gee, R. H. et al. Appl. Toxicol. 2008, 28, 78.
  4. Calafat, A. M. et al. Health Perspect. 2008, 116(3), 303.
  5. Ricart, M. et al. Toxicol. 2010, 100(4), 346.
  6. Pycke, B. F. G. et al. Appl. Environ. Mircobiol. 2010, 76(10), 3116.

Green Chemistry Principle #8: Reduce Derivatives

By Trevor Janes, Member-at-Large for the GCI

8. Unnecessary derivatization (e.g. installation/removal of use protecting groups) should be minimized or avoided if possible, because such steps require additional reagents and can generate waste.

In Video #8, Cynthia and Devon look at one common example of derivatization, which is the use of protecting groups in chemical reactions. To help illustrate the concept of a protecting group, they use toy building blocks.

In this blog post, I will use cartoons such as the one shown below (a specific example of the use of protecting groups will be shown at the end of this post).

Principle 8 - unselective reaction

Figure 1 An unselective reaction.

In Figure 1, the starting material contains two reactive sites, represented by U-shaped slots. We only want the slot on the right to react with the reagent, shown as red circles. The starting material is reacted with the reagent in order to make the desired product, but an undesired product also forms, because both U-shaped slots react with the red circle. In other words, Figure 1 shows an unselective reaction because a mixture of products is made.

Formation of the undesired product can be avoided by carrying out a protection reaction before using the red reagent, and then carrying out a final deprotection reaction. This sequence of reactions is shown in Figure 2.

Principle 8 - selectivity through protecting groups

Figure 2 A selective reaction through the use of a protecting group, which temporarily blocks the reactive site on the left side. 

 

Figure 2 shows how a selective reaction is traditionally done – through the use of a temporary block, known as a protecting group. The starting material can be protected by blocking one of the reactive sites, represented by the blue rectangle covering the U-shaped slot on the left. This intermediate only has one reactive site left, so the second reaction with the red reagent can only happen at the empty U-shaped slot on the right. To get the same desired product as in Figure 1, the third and final deprotection step is carried out, which removes the protecting group.

Principle 8 - waste from protecting groups

Figure 3 The waste created by all three reactions in Figure 2.

Even though the product from Figure 2 is the desired product, we had to do three reactions to only make one change, which is inefficient. Also, each step generates waste products (shown underneath each reaction arrow in the above cartoon) , which are depicted in Figure 3.

Protecting groups are a useful tool that chemists use to make the molecules, because we often need to carry out selective reactions on a molecule that has multiple of the same reactive sites. However, as we have talked about here, they are also inefficient and wasteful.

An active area of research is the development of more selective reactions, which eliminate the need to use protecting groups altogether.[1] Selective reactions use slight differences in a molecule’s chemistry to make a reaction happen at only the desired reactive site. This is very similar to the installation of the protecting group in Figure 2.

As more and more highly selective reactions are discovered, our syntheses can be made more efficient by reducing the number of steps required and the amount of waste produced. Looking ahead, protecting groups will be less and less necessary – and that’s a good thing!

 

Appendix – Example from Real Chemistry

A simple, specific example of the use of protecting groups[2] is shown below. Both oxygen-containing sites are reactive, but we only want the one on the left side to react in this case. The first reaction is the installation of the protecting group, (CH3)3SiCl, on the OH oxygen only, protecting the right side. The second reaction shows the reagent, CH3CH2CH2MgBr (for those curious, this is called a Grignard Reagent), which now reacts with just the ketone C=O site on the left, adding the desired new CH3CH2CH2 segment. The last step shows a combination of removing the protecting group to return the OH group, and also removing the [MgBr] segment of the reagent with the help of acid (shown as H3O+), which leaves the desired product with a CH3CH2CH2 chain added only on one side of the molecule.

Principle 8 - real protecting group use in chemistry

This example of a selective reaction uses a protecting group, but this requires 3 steps to only make 1 change. Instead, we can eliminate the need for protecting groups by designing new and more selective reactions that are much more efficient.

References:

[1] I. S. Young and P. S. Baran, Nature Chem. 2009, 1, 193

[2] R. J. Ouellette and J. D. Rawn, in Organic Chemistry, 2014, Elsevier, Boston pp 491-534.

Taking Concrete Steps to CO2 Sequestration

Taking Concrete Steps to CO2 Sequestration

By Annabelle Wong, Member-at-Large for the GCI

With heightened concerns on greenhouse gas (GHG) emissions in recent years, scientists and engineers have come up with some innovative solutions to mitigate carbon dioxide emissions. One solution is to utilize and covert CO2 to everyday products such as fuels and plastics. Recently I learned that CO2 is now being converted into cement on an industrial scale.

Concrete is the most common construction material for buildings, roads, and bridges. Cement is one of the components of concrete and acts as a glue to hold concrete together. However, cement manufacturing is an energy-intensive process and the cement/concrete industry is one of the biggest CO2 emitters. In fact, 5% of the global GHG emission stems from cement production.1–3 To understand why so much CO2 is released, let’s first take a look at how cement is produced.

To make cement, limestone (calcium carbonate, CaCO3), silica (SiO2), clay (containing mostly Al2O3), and water are mixed and heated. This reaction produces a significant amount of CO2 and is called calcination. During calcination, at temperatures above 700 °C, limestone is decomposed to lime, or calcium oxide, and CO2 (Reaction 1). Then, lime reacts with SiO2 to form calcium silicates (C2S in simplified cement chemist notation, where C = CaO, S = SiO2) and tricalcium silicates (C3S) as the temperature ramps up to 1500 °C (Figure 1). The final product, called clinker, is then cooled and milled into a fine power. Afterwards, minerals such as gypsum (CaSO4) are added to make cement.4 A useful animation of cement making can be found here.5

CaCO3 (s) → CaO (s) + CO2↑ (g)                   (1)

annabelle_blog_feb2017-2

Figure 1. Raw materials are heated up to 1500 degrees C to synthesize clinker. The ratios of products yielded at various temperatures are shown. [4]

CO2 generated via calcination actually only consists of 50% of the total CO2 emission from cement production, while 40% comes from fuel combustion for heating the reaction and 10% comes from electricity usage and transportation.6,7

The idea of rendering the cement process more sustainable is to capture CO2 from a cement plant’s flue gas and convert it to the starting material of cement, CaCO3, creating a carbon neutral process. Scientists and engineers have been developing different technologies to achieve this goal. For example, at Calera, a company in California, CO2 is first converted to carbonic acid. Then, Ca(OH)2, which can be found in industrial waste streams, is added to convert carbonic acid to CaCO3 and water. The overall reaction is shown in Reaction 2.8

CO2 + Ca(OH)2 → CaCO3 +H2O                     (2)

Iizuka et al.9 suggested that the Ca(OH)2 and calcium silicates can be extracted from waste concrete, such as concrete from dismantled buildings, as a source of calcium ions. Their methodology is similar to Calera’s, but the carbonic acid is used for the extraction of calcium ions from waste cement (Figure 2).9 Furthermore, Vance et al. has shown that liquid and supercritical CO2 can accelerate the formation of CaCO3 from Ca(OH)2.1

annabelle_blog_feb2017-3

Figure 2. Recycling CO2 and concrete to make limestone, the starting material of cement. [9]

On the other hand, CarbonCure, a Canadian company, takes a slightly different approach in CO2 sequestration in the concrete industry. In their technology, CO2 is incorporated in the concrete production process, rather than the cement production process. CO2 is injected into the wet concrete mixture, where it is mixed with water to form carbonates (Reactions 1-3 in Figure 2). Then, the carbonates react with the existing Ca2+ in cement to form calcium carbonate nanoparticles, or limestone nanoparticles (Reaction 6 in Figure 2), which are well distributed in the concrete. This technique not only upcycles CO2, but also increases the compressive strength of the material due to these limestone nanoparticles.10

As mentioned above, fuel combustion and use of electricity also contribute to the CO2 emissions of cement production. In this way, other efforts to reduce CO2 emissions include recovering heat from the cooled clinker,5 utilization of alternative fuels, reduction of clinker in cement,3,11 and utilization of cement to absorb CO2.2

With innovative research, development, and commercialization of CO2 conversion technologies, I am optimistic that they will have a solid impact in the near future at the global scale. However, despite the current advances in CO2 conversion technology, a collaborative effort on both CO2 capture and utilization, along with the infrastructure to bridge these two technologies together, is essential to realize a carbon- neutral society.

References

(1)         Vance, K.; Falzone, G.; Pignatelli, I.; Bauchy, M.; Balonis, M.; Sant, G. 2015.

(2)         Torrice, B. M. Chemical and Engineering News. November 2016, p 8.

(3)         Crow, J. M. Chemistry World. 2008.

(4)         Maclaren, D. C.; White, M. A. J. Chem. Educ. 2003, 80 (6), 623–635.

(5)         Cement Making Process http://www2.cement.org/basics/images/flashtour.html.

(6)         Explore Cement http://www.wbcsdcement.org/index.php/about-csi/explore-cement?showall=&start=2.

(7)         Mason, S. UCLA scientists confirm: New technique could make cement manufacturing carbon-neutral http://newsroom.ucla.edu/releases/ucla-scientists-confirm:-new-technique-could-make-cement-manufacturing-carbon-neutral.

(8)         The Process http://www.calera.com/beneficial-reuse-of-co2/process.html.

(9)         Iizuka, A.; Fujii, M.; Yamasaki, A.; Yanagisawa, Y. Ind. Eng. Chem. Res. 2004, 43, 7880–7887.

(10)      Technology http://carboncure.com/technology/.

(11)      Cement Industry Energy and CO2 Performance: Getting the Numbers Right (GNR); 2016.

All Wrapped Up – Catalyst-Containing Wax Capsules Instead of Glove Boxes

All Wrapped Up – Catalyst-Containing Wax Capsules Instead of Glove Boxes

By Kevin Szkop, Symposium Coordinator for the GCI

What if you could do air-sensitive chemistry without a glove box or Schlenk line?

This is the idea behind the company XiMo, launched by Amir Hoveyda from Boston College, Richard Schrock from MIT and their co-workers.

Schrock, Hoveyda and many others work in the area of making carbon-carbon bonds.  The carbon-carbon bond is ubiquitous in nature, found in (nearly) every organic and naturally occurring molecule. The complexity of design that can be obtained from a seemingly simple chemical bond is unparalleled. The formation of carbon-carbon bonds is very important in the manufacturing of pharmaceuticals, food and natural products, agricultural chemicals, materials, and more. Notably, synthetic organic and inorganic chemists work together to design catalysts that are able to carry out this priceless transformation.

There have been many advances in this regard, especially in the field of coupling reactions and bond metathesis (the swapping of partners by a re-distribution of alkene and alkyne groups), both endeavours earning their discoverers Nobel prizes.1,2 However, a shortcoming in this field is the air- and moisture-sensitivity of the catalysts that need to be used for these transformations. The typical way of overcoming this problem is through the use of a glove box.

kevin-blog-1

Typical glove box used to protect air- and moisture-sensitive materials.

A glove box is an essential piece of laboratory equipment to the synthetic chemist. By providing an air- and moisture-free environment, sensitive chemistry can easily be performed.
While useful, glove boxes are expensive to buy and operate, require a lot of inert gas (argon or nitrogen) to maintain a clean and dry working atmosphere, and a lot of upkeep is needed to maintain their successful operation.

 

In efforts to address these issues, Amir Hoyveda from Boston College, Richard Schrock from MIT, and coworkers have launched the company XiMo3, which manufactures paraffin tablets containing air and moisture sensitive materials. Using less rigorous techniques for the exclusion of air and moisture from the reaction vessel than a glove box, the organic chemist can simply add the tablet to the desired reaction. The tablets will release their contents in the reaction solvent under mild heating conditions. Therefore, even though precautions must be taken, the overall process eliminates the need for a glove box.4

kevin-blog-2

Paraffin wax tablet

Many different factors affect the integrity of the paraffin wax tablets. The active compound must be able to dissolve in the reaction medium and release its contents under desirable conditions, it must be air- and water-stable, and the active compounds must be homogeneously dispersed within the volume of the tablet, but not on the surface. These problems have all been overcome since the company’s founding in 2005.

Some of the commercially available catalysts (shown below) are widely used in metathesis reactions for the construction of complex molecular carbon backbones.5,6,7 These reagents have been successfully incorporated into a paraffin tablet and show equivalent activity in selected reactions compared to the traditional catalyst in reactions performed under air- and moisture-free conditions.

 

kevin-blog-3

Typical metathesis catalysts embedded in paraffin wax tablets.

The company’s founders hope that this new technology will speed up research and development endeavours, particularly in the field of drug synthesis. Bypassing the need for a glovebox, the paraffin tablets will allow a wide range of organic chemists to explore the rich chemistry obtainable by these air sensitive catalysts.

 

References

  1. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2005/
  2. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2010/
  3. XiMo Technologies: http://www.ximo-inc.com/technology-updates
  4. Chemistry World News, Oct. 2016: https://www.chemistryworld.com/news/wax-pills-for-safe-and-simple-olefin-metathesis-hit-the-market/1017567.article
  5. Koh, M.-J.; Nguyen, T. T.; Zhang, H.; Schrock, R. R.; Hoveyda, A. H.Nature2016, 531,
  6. Lam, C. Zhu, K. V. Bukhryakov, P. Müller, A. H. Hoveyda, R. R. SchrockJ. Am. Chem. Soc. 2016, 138, 15774.
  7. T. Nguyen, M. J. Koh, X. Shen, F. Romiti, R. R. Schrock, A. H. HoveydaScience, 2016, 352, 569.