ACS Summer School on Green Chemistry and Sustainable Energy 2017

ACS Summer School on Green Chemistry and Sustainable Energy 2017

By Samantha Smith, Yuchan Dong, and Shira Joudan

Yuchan Dong, who previously studied in China, had begun to miss life with roommates while in Canada. She reminisced about how you could talk about your lives late into the night, and spend meals chatting with friends in the cafeteria. “Luckily, at the ACS summer school, [she] got the chance to experience such life again and got to know a lot people who share same interests.” The summer school brought us back to the more carefree times of our undergraduate lives. Living in dormitories, sharing a floor with fifty-two other highly educated students, sharing every meal with our newly-formed friends, and even tackling homework assignments were just like the “good old days”. The level of diversity strengthened the value of peer-networking and real friendships were made throughout the week.

ACS Summer School blog1

The week wasn’t just filled with relaxing chats in the Colorado sun; that was merely how we spent our free time. The days were jam-packed with riveting lectures during the day, assignments in the evening, and getting to know the local Golden beers at night (which was obviously a duty of ours as tourists). We also had the chance to take in the local scenery with hikes and whitewater rafting.

The ACS summer school on green chemistry is a competitive program offered to graduate students, post-doctoral fellows, and industry members every year in Golden, Colorado. Hosted by the Colorado School of Mines, the program consists of five days of lectures from green chemistry and sustainable energy experts, two poster sessions, a whitewater rafting trip, and lots of opportunity for networking. This program teaches global sustainability challenges with a focus on sustainable energy. The ACS Summer School is free of charge for successful attendees, including travel, accommodation on campus, and meals.

ACSblog5_IMG_6689

Samantha, Yuchan, and Shira at the ACS Summer School

Jim Hutchison, a professor at the University of Oregon, spoke about how his department has completely reformatted their undergraduate chemistry curriculum to contain green and sustainable chemistry, something that particularly sparked Shira’s interest as lead of GCI’s Education Subcommittee. Bill Tolman, Chair of the University of Minnesota Chemistry Department, shared how students successfully cultivated the safety culture within his department. This had inspired Samantha to create new initiatives within our chemistry department. Queens University’s Professor Philip Jessop taught us about Life-Cycle Analysis (LCA) and assigned us multiple processes for which we calculated the gate-to-gate LCA. Mary Kirchhoff and David Constable from ACS gave talks on green chemistry and ACS resources, many of which would be useful to other departments. The format of the summer school allowed plenty of time to chat with the guest lecturers during coffee breaks, lunches, and poster sessions.

Many real-world issues were discussed. The worldwide energy usage and sources of energy were a main topic of discussion, as was the use of alternative sources. We were blown away by how multi-disciplinary green chemistry is, and we were enlightened on how we need experts in all fields to successfully create sustainable chemistry. We learned that to be able to effectively tackle environmental issues we need great synthetic chemists, whether they specialize in organic, materials or catalysis, as well as analytical chemists, engineers, environmental chemists, and toxicologists. We also need effective entrepreneurs and lobbyists.

Nearing the end of the summer school, a large group of us hiked up Tabletop mountain to get the most amazing view of the valley. A warm feeling of appreciation towards the summer school for bringing us out of the isolation of individual research in the busy city life was shared. We would like to thank ACS for giving us the chance to attend this amazing week. This experience has truly been beneficial to us, and we plan to use the knowledge gained during the week in our own studies as well as pass this knowledge on to our coworkers at the University of Toronto.

ACS Summer School blog 4_image2

Tabletop mountain in Golden, CO

We highly encourage anyone interested in green chemistry and sustainability to attend this beneficial program. Application deadlines are early in the year and submitted online. The application consists of the applicant’s CV, unofficial transcript, letter of nomination from faculty advisor or another faculty member, and a one-page essay describing your interest in green chemistry and sustainability as well as how it will benefit the applicant.

Advertisements

UofT Demonstrates its Commitment to Sustainable Chemistry

“We’re very pleased and proud to announce that the Chemistry Department has recently joined the Green Chemistry Commitment (GCC)!” – Dr. Andy Dicks, University of Toronto, Associate Professor

gci-group-photo-sept27-2016

GCI Members Fall 2016

The University of Toronto has recently signed the GCC making us the first school outside of the United States to sign onto this impactful commitment, which now contains 33 colleges and universities. The GCC is overseen by Beyond Benign, a United States not-for-profit organization created by Dr. Amy Cannon and Dr. John Warner, a founder of the principles of green chemistry. Within the GCC, academic institutions collaborate to share resources and know-how in order to positively impact how the next generation of scientists are educated about sustainability issues. Participating departments commit to green chemistry instruction as a core teaching mandate. The aim is to provide undergraduates and graduates with the required understanding to make green chemistry become standard practice in laboratories around the world. This, in turn, ensures that when graduates of the university enter the workforce, they are armed with the knowledge of how to make molecules and processes more sustainable and less toxic by adhering to the Twelve Principles of Green Chemistry.

The GCC unites the green chemistry community around shared goals and a common vision to grow departmental resources to allow a facile integration of green chemistry into the undergraduate laboratories as well as to improve connections with industry which creates job opportunities for sustainability-minded graduates. Their website offers many resources for those interested in reading actual case studies and laboratory exercises, so please click here to visit their website and be informed!

Our chemistry department has already improved the green chemistry content in our undergraduate laboratories by updating the first year courses and upper year synthetic chemistry courses to include various graded questions about the Twelve Principles as well as ensuring the undergraduates are thinking about how they could make their current lab protocols more sustainable. Additionally, students can choose to study the fate of chemicals in our environmental chemistry courses offered. Of course there’s always room to improve, so the Green Chemistry Initiative (GCI), in collaboration with Dr. Andy Dicks, is working on evaluating the undergraduate chemistry curriculum’s current focus on sustainable chemistry and toxicology, in hopes to further improve our undergraduate’s learning experience. The GCI also provides many educational opportunities to department members such as our Seminar Series as well as many outreach opportunities, making our group a driving force in the integration of green chemistry principles to the department. Lastly, the University of Toronto chemistry courses reach thousands of students a year, and by being the first Canadian university to sign this commitment, we are working towards a greener future in Canada!

Thank you for celebrating this very momentous achievement with us!
Karl Demmans, Ian Mallov, Shira Joudan, and Laura Reyes

Green Chemistry Education through TAs at the University of Toronto

By Julia Bayne, Member-at-Large for the GCI

Green chemistry education is one of our main initiatives within our chemistry department. As part of an ongoing collaboration, we, the Green Chemistry Initiative (GCI), work with the teaching faculty to help modify and improve the undergraduate curriculum through the incorporation of green chemistry. This partnership has resulted in a substantial increase in the amount of green chemistry taught in the classroom and the modification or replacement of a number of experiments in the laboratory component of these courses. For example, the University of Toronto offers a third year undergraduate chemistry course (CHM343H: Organic Synthesis Techniques) that has undergone a complete transformation and now largely emphasizes the main concepts of green chemistry. Not only is the theory discussed in lecture, but the students are also strongly encouraged (and graded on their ability) to integrate green chemistry practices into their experiments in the laboratory.[1]

Green Chemistry for TAs Handout - page 1

We created this handout to encourage TAs to teach their students the basics of green chemistry [PDF].

Although this initiative has emphasized educating the undergraduate students, we found that the teaching assistants (TAs) and laboratory demonstrators did not always have a strong training in green chemistry themselves, and therefore did not necessarily feel comfortable teaching green chemistry concepts to their students. With this in mind, our next goal was to create a handout for TAs that would contain a concise explanation of green chemistry, along with some tips that they could use to help encourage students to align their thinking with the 12 principles of green chemistry. This handout, entitled “Tips for Teaching Green Chemistry to Students (pdf)” contains a brief explanation of green chemistry and lists the 12 principles of green chemistry with a short summary to highlight each one. The handout also includes suggestions on how to encourage undergraduate students to properly implement these principles into their laboratory practice.

Subsequently, we chose to highlight four key teaching points (pdf) through fun graphics that help emphasize the importance of green chemistry in the lab. The key points are as follows: 1) Work on a small scale, 2) A higher LD50 (median lethal dose) value typically indicates a safer chemical, 3) Minimize solvent use when washing glassware, and 4) Separate waste in the correct container so it can be disposed of accordingly. By simplifying and highlighting these important points, we hope that TAs will feel more comfortable teaching a few basic green chemistry concepts to their students, and similarly, we hope that the students will gain a better understanding of how to apply the principles of green chemistry to real-world situations in the laboratory.

Green Chemistry for TAs Handout - page 2

Starting from the perspective of undergrad labs, we picked these 4 key green chemistry teaching points to emphasize to the TAs [PDF].

We anticipate that by reaching out to the graduate students who teach the lab component of the undergraduate courses, they will themselves be more comfortable and excited to teach students about green chemistry, including the straightforward substitutions and modifications it has to offer. Ultimately, we hope to see more enthusiasm among the undergraduate students as they grasp the importance and benefits of including green chemistry in the laboratory component of their courses and potentially research laboratories in the future.

References:

[1] Edgar, L. J. G.; Koroluk, K. J.; Golmakani, M. and Dicks, A. P. J. Chem. Ed. 2014, 91, 1040-1043.