Issues of Sustainability in Laboratories Outside the Field of Chemistry: Pipette Tips

Issues of Sustainability in Laboratories Outside the Field of Chemistry: Pipette Tips

By David Djenic, Member-at-Large for the GCI

As a biochemistry student in the Green Chemistry Initiative, I’m interested in looking at how to implement the principles of green chemistry in molecular biology and biochemistry labs. While molecular biology labs focus more on studying biological systems and molecules rather than synthesizing new molecules, like in synthetic chemistry, there are still problems when it comes to performing environmentally sustainable research.

Pipette tips and pipette tip racks are major contributors to non-chemical waste in biomedical labs because of the volume of tips thrown out and the lack of recycling programs to deal with tips and racks. Pipette tip racks are commonly used because they reduce the risk of contaminating pipette tips. Pipette tip racks are made of #5 plastic (polypropylene), the same material as yogurt cups, medicine bottles and David_blog 1microwavable containers, making them lightweight and very safe to use [1].
However, #5 plastics are rarely accepted by curbside recycling programs and are placed in landfills and incinerators instead [2]. The plastic from the empty polypropylene racks take hundreds, if not thousands, of years to degrade [3].

Biomedical companies have worked in the past 10 years to reduce the amount of waste from pipette tip racks. For example, Anachem, a pipette and pipette tip manufacturing company in the UK, has collaborated with a plastic recycling company to collect racks from qualifying laboratories, ground them down, melt them, and remould into new products [3]. A similar program is run at the Environment, Health and Safety (EHS) division of the National Cancer Institute at Frederick (NCI-Frederick), where, from 2003 to 2006, approximately 8,400 pounds of pipette tip boxes were recycled, saving approximately $7,400 in medical waste contract money [4].

David_blog 2

Pipette tip box waste to be recycled through the EHS program [4].

There aren’t many statistics on the waste produced by the pipette tips themselves. But whenever I’m in a biochemistry lab course, the orange bins where used tips are thrown are filled to the brim with pipette tips, microcentrifuge tubes, Falcon tubes, etc. It is more difficult to reduce and recycle tips rather than tip racks because they are heavily contaminated after use. GreenLabs at the University of Chicago offers some interesting suggestions on reducing pipette waste, such as using pipette tip refills, buying pipette tips made from sustainable material, and generally reducing pipette tip use when possible. However, more research on pipette tip waste is needed to quantifiably analyze the impact of tips and come up with solutions to reduce potential waste.

I think undergraduate biomedical teaching and research labs do apply basic green chemistry principles, even if they are not explicitly brought up. Many of the reactions are done in very small, precise quantities and waste is generally disposed of in the proper place. However, there does not seem to be much exposure, if at all when it comes to green chemistry issues; biochemistry and biomedical students aren’t aware of the environmental impact they generate in labs. Introducing green chemistry education in biomedical laboratories at U of T, especially when it comes to the issue of pipette tips and racks, would help U of T reduce its environmental impact even more.






[4] G. A. Ragan, J. Chem. Health Saf. 2007, 14, (6) 17-20.

Taking Concrete Steps to CO2 Sequestration

Taking Concrete Steps to CO2 Sequestration

By Annabelle Wong, Member-at-Large for the GCI

With heightened concerns on greenhouse gas (GHG) emissions in recent years, scientists and engineers have come up with some innovative solutions to mitigate carbon dioxide emissions. One solution is to utilize and covert CO2 to everyday products such as fuels and plastics. Recently I learned that CO2 is now being converted into cement on an industrial scale.

Concrete is the most common construction material for buildings, roads, and bridges. Cement is one of the components of concrete and acts as a glue to hold concrete together. However, cement manufacturing is an energy-intensive process and the cement/concrete industry is one of the biggest CO2 emitters. In fact, 5% of the global GHG emission stems from cement production.1–3 To understand why so much CO2 is released, let’s first take a look at how cement is produced.

To make cement, limestone (calcium carbonate, CaCO3), silica (SiO2), clay (containing mostly Al2O3), and water are mixed and heated. This reaction produces a significant amount of CO2 and is called calcination. During calcination, at temperatures above 700 °C, limestone is decomposed to lime, or calcium oxide, and CO2 (Reaction 1). Then, lime reacts with SiO2 to form calcium silicates (C2S in simplified cement chemist notation, where C = CaO, S = SiO2) and tricalcium silicates (C3S) as the temperature ramps up to 1500 °C (Figure 1). The final product, called clinker, is then cooled and milled into a fine power. Afterwards, minerals such as gypsum (CaSO4) are added to make cement.4 A useful animation of cement making can be found here.5

CaCO3 (s) → CaO (s) + CO2↑ (g)                   (1)


Figure 1. Raw materials are heated up to 1500 degrees C to synthesize clinker. The ratios of products yielded at various temperatures are shown. [4]

CO2 generated via calcination actually only consists of 50% of the total CO2 emission from cement production, while 40% comes from fuel combustion for heating the reaction and 10% comes from electricity usage and transportation.6,7

The idea of rendering the cement process more sustainable is to capture CO2 from a cement plant’s flue gas and convert it to the starting material of cement, CaCO3, creating a carbon neutral process. Scientists and engineers have been developing different technologies to achieve this goal. For example, at Calera, a company in California, CO2 is first converted to carbonic acid. Then, Ca(OH)2, which can be found in industrial waste streams, is added to convert carbonic acid to CaCO3 and water. The overall reaction is shown in Reaction 2.8

CO2 + Ca(OH)2 → CaCO3 +H2O                     (2)

Iizuka et al.9 suggested that the Ca(OH)2 and calcium silicates can be extracted from waste concrete, such as concrete from dismantled buildings, as a source of calcium ions. Their methodology is similar to Calera’s, but the carbonic acid is used for the extraction of calcium ions from waste cement (Figure 2).9 Furthermore, Vance et al. has shown that liquid and supercritical CO2 can accelerate the formation of CaCO3 from Ca(OH)2.1


Figure 2. Recycling CO2 and concrete to make limestone, the starting material of cement. [9]

On the other hand, CarbonCure, a Canadian company, takes a slightly different approach in CO2 sequestration in the concrete industry. In their technology, CO2 is incorporated in the concrete production process, rather than the cement production process. CO2 is injected into the wet concrete mixture, where it is mixed with water to form carbonates (Reactions 1-3 in Figure 2). Then, the carbonates react with the existing Ca2+ in cement to form calcium carbonate nanoparticles, or limestone nanoparticles (Reaction 6 in Figure 2), which are well distributed in the concrete. This technique not only upcycles CO2, but also increases the compressive strength of the material due to these limestone nanoparticles.10

As mentioned above, fuel combustion and use of electricity also contribute to the CO2 emissions of cement production. In this way, other efforts to reduce CO2 emissions include recovering heat from the cooled clinker,5 utilization of alternative fuels, reduction of clinker in cement,3,11 and utilization of cement to absorb CO2.2

With innovative research, development, and commercialization of CO2 conversion technologies, I am optimistic that they will have a solid impact in the near future at the global scale. However, despite the current advances in CO2 conversion technology, a collaborative effort on both CO2 capture and utilization, along with the infrastructure to bridge these two technologies together, is essential to realize a carbon- neutral society.


(1)         Vance, K.; Falzone, G.; Pignatelli, I.; Bauchy, M.; Balonis, M.; Sant, G. 2015.

(2)         Torrice, B. M. Chemical and Engineering News. November 2016, p 8.

(3)         Crow, J. M. Chemistry World. 2008.

(4)         Maclaren, D. C.; White, M. A. J. Chem. Educ. 2003, 80 (6), 623–635.

(5)         Cement Making Process

(6)         Explore Cement

(7)         Mason, S. UCLA scientists confirm: New technique could make cement manufacturing carbon-neutral

(8)         The Process

(9)         Iizuka, A.; Fujii, M.; Yamasaki, A.; Yanagisawa, Y. Ind. Eng. Chem. Res. 2004, 43, 7880–7887.

(10)      Technology

(11)      Cement Industry Energy and CO2 Performance: Getting the Numbers Right (GNR); 2016.

Challenges in Designing Non-Toxic Molecules: Using medicinal chemistry frameworks to help design non-toxic commercial chemicals

By Shira Joudan, Education Committee Coordinator for the GCI

Throughout the past 20 years, there have been numerous reports on the state of the science of designing non-toxic molecules, including three in this year alone.1–3 The idea of safe chemicals has been around for much longer than the green chemistry movement, however it is an important pillar in what it means for a chemical to be green. In fact, many scientists agree that the synthesis of safer chemicals is likely the least developed area of Green Chemistry, with lots of room for improvement.2 For more information, see our post and video on Green Chemistry Principle #4.

One expert on designing non-toxic molecules is Stephen C. DeVishira-blog-picto of the United States Environmental Protection Agency (US EPA). In a recent paper DeVito highlights some major challenges creating safer molecules, and discusses how we can approach this challenge.1 We require a societal change about how we think of toxicity, and this shift must begin with specific education.

How can we agree upon definition of a “safe” chemical?

We need to decide and agree upon parameters that deem a molecule safe, or non-toxic. Generally, most chemists agree that an ideal chemical will have no (or minimal) toxicity to humans or other species in the environment. It should also not bioaccumulate or biomagnify in food chains, meaning it should not build up in biota, or increase in concentration with increased trophic levels in a food chain. After its desired usage, an ideal chemical should break down to innocuous substances in the environment. Potency and efficacy are also important, as well as the “greenness” of its synthesis. Setting quantitative thresholds to these parameters and enforcing them is the largest challenge.

How do we tackle the over 90,000 current use chemicals?

Although not all of these chemicals are actually in use, they are all registered under the US EPA’s Toxic Substances Control Act (TCSA), which contains both toxic and non-toxic chemicals. Many chemicals that are being used should be replaced with safer alternatives, but there are so many that it seems terrifying to know where to begin. Another replacement option is designing new technologies that don’t require the function that these chemicals provide. About two-thirds of the chemicals registered in TCSA or Environment and Climate Change Canada’s Chemicals Management Plan were in use before registration was required. Unlike pharmaceuticals and pesticides which are heavily regulated by Health Canada, commercial chemicals do not require stringent toxicity tests. But things are changing in the US and in Canada. For example, Canada has just listed 1550 priority chemicals that will be addressed by 2020. When considering replacement for chemicals of concern, the most common barrier to reducing the use is currently “no known substitutes or alternative technologies”.

How do we ensure sufficient training on the concepts of safer chemical design?

Many people making new chemicals are unfamiliar with green chemistry and basic toxicology principles. Without the proper toolbox of knowledge designing safer chemicals is challenging. [The Green Chemistry Commitment is a great place to start!] DeVito discusses the need for “toxicological chemists” which would be analogous to medicinal chemists, but instead produce non-toxic commercial chemicals. Medicinal chemists have the training to design appropriate pharmaceuticals, however commercial chemicals do not receive the same attention in terms of designing safe and efficacious products. Since humans are exposed to the commercial chemicals as well, often in intimate settings, the same attention to detail should be used during the synthetic process in order to produce safe chemicals.

Synthetic organic chemists are the ones designing the new chemicals, and we can no longer keep traditional chemists and toxicologists an arm’s length apart. Instead, there is a need for a new type of scientist that considers the function of the chemical for its desired usage and its toxicity potential to humans and the environment. Similar to the training of medicinal chemists, these chemists should receive training in biochemistry, pharmacology and toxicology, and also in environmental fate processes. DeVito suggests adding topics into an undergraduate curriculum, some of which are highlighted here:

  • Limit bioavailability: A common way to prevent toxicity has been to reduce the bioavailability of molecules. Essentially, the idea is that if the chemical cannot be absorbed into the bloodstream of humans or other species, it will not be able to cause significant toxic effects. A common predictor for bioavailability is the “Rule of 5”, where a molecule will have poor absorption if it contains more than five hydrogen bond donors or 10 hydrogen bond acceptors, a molecular weight of more than 500 amu, and a logP (or log Kow) of greater than 5.4 More sophisticated prediction methods also exist based on linear free energy relationships. A good example of low bioavailability is the artificial sweetener sucralose, where only 15% of the chemical is absorbed through the gastrointestinal tract into the bloodstream.5
  • Isosteric substitutions of molecular substituents: By removing parts of the molecule and replacing it with another functional group with similar physical and chemical properties (isosteric) toxicity can be reduced. This is common in medicinal chemistry, where it is referred to as bioisosterism, and is used to reduce toxicity, alter bioavailability and metabolism. A simple substitution can be replacing a hydrogen atom for a fluorine atom, but there can also be much larger isosteric substitutions.
  • Designing for degradation: A toxic molecule that persists in the environment can lead to global long term exposure. Understanding common environmental breakdown mechanisms can allow us to design molecules that will break down to innocuous products after their desired usage. A good starting point is understanding aerobic microbial degradation, since most of our waste ends up at a wastewater treatment plant. An important thing to keep in mind is that if a non-toxic molecule degrades to a toxic molecule, the starting material will still be of concern.

Toxicity is complicated. The best way to arm the next generation of chemists with the skills needed to design smart, safe chemicals is to tailor the undergraduate education to our new goals.

Numerous institutions, including the University of Toronto, are working towards this by signing onto the Green Chemistry Commitment!

(1)         DeVito, S. C. On the design of safer chemicals: a path forward. Green Chem. 2016, 18 (16), 4332–4347.

(2)         Coish, P.; Brooks, B. W.; Gallagher, E. P.; Kavanagh, T. J.; Voutchkova-Kostal, A.; Zimmerman, J. B.; Anastas, P. T. Current Status and Future Challenges in Molecular Design for Reduced Hazard. ACS Sustain. Chem. Eng. 2016, 4, 5900–5906.

(3)         Jackson, W. R.; Campi, E. M.; Hearn, M. T. W.; Collins, T. J.; Voutchkova-Kostal, A. M.; Kostal, J.; Connors, K. A.; Brooks, B. W.; Anastas, P. T.; Zimmerman, J. B.; et al. Closing Pandora’s box: chemical products should be designed to preserve efficacy of function while reducing toxicity. Green Chem. 2016, 18 (15), 4140–4144.

(4)         Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development setting. Adv. Drug Deliv. Rev. 2001, 46, 3–26.

(5)         Roberts, A.; Renwick, A. G.; Sims, J.; Snodin, D. J. Sucralose metabolism and pharmacokinetics in man. Food Chem. Toxicol. 2000, 38, 31–41.

Recycling Perovskite Solar Cells

Recycling Perovskite Solar Cells

By Judy Tsao, Member-at-Large for the GCI

Solar energy is arguably the most abundant and environmentally friendly source of energy that we have access to. In fact, crystalline silicon solar cells have been employed in parts of the world at a comparable cost to the price of electricity derived from fossil fuels.1 The large-scale employment of solar cells, however, remains challenging as the efficiency of existing solar cells still needs to be improved significantly.

An important recent breakthrough the field of solar cells is the use of perovskite solar cells (PSC), which includes a perovskite-structured compound as the light-harvesting layer in the device (Figure 1). Perovskite is a name given to describe the specific 3-D arrangement of atoms in such materials. Even though the first PSC was reported only in 2009, its power conversion efficiency (PCE) has already been reported to exceed 20%, a milestone in the development of any new solar cells which typically takes decades of optimization to achieve.2


Figure 1. Thin-film perovskite solar cell manufactured by vapour deposition (photo credit: Boshu Zhang, Wong Choon, Lim Glenn & Mingzhen Liu)

PSC has several advantages compared with traditional solar cells, including low weight, flexibility, and low cost.3 There are, however, several challenges that must be overcome before PSC can be brought to the market. The most common PSC to date includes CH3NH3PbI3 and related materials, which contain soluble lead (II) salts that are toxic and strictly regulated.

Interestingly, there has been a consensus in the literature that the lead content in the perovskite layer is not actually the main issue in the environmental impact of PSC production.4 Part of the reason for this conclusion is simply that the thickness of perovskite layer required would amount to less than 1000 mg of lead in one square meter of material. This value is only modest compared to lead pollution from other human sources such as lead paints or lead batteries.5

The main environmental concerns regarding PSCs appear to lie in the use of gold and high temperature processes during the manufacturing of the devices.6 It has thus been suggested that, in order to reduce the environmental impact of PSCs, recycling of raw materials is very important. In a recent study by Kadro et al., 7 a facile protocol for the recycling of perovskite solar cell was developed. The entire procedure takes place at room temperature and takes less than 10 minutes (Figure 2).


Figure 2. Schematic process for recycling PSC components [7].

As it turns out, components of a fully assembled PSC can be extracted by sequentially placing the device in different solvents. Step 1 of the procedure uses chlorobenzene to remove the gold layer, while step two uses ethanol to dissolve CH3NH3I. This then leaves PbI2 to be the only component remaining on the device, which can be removed by just a few drops of N,N-dimethylformamide. It is also worth noting that the recycled materials can be fabricated into a complete PSC again without significant drop in performance.

Even though the discovery of PSC has only been made less than a decade ago, its potential in applications in photovoltaics has been underlined by numerous studies. It is especially gratifying to see that the environmental impacts of such devices are already under active research before PSCs are introduced to the market. While these studies have demonstrated that PSCs have low environmental impacts when properly recycled, there are other challenges still facing researchers in this field. In particular, the short lifetime of such devices needs to be improved to match that of traditional silicon-based solar cells. Nevertheless, the facile method of recycling PSCs without compromising the performance will certainly make them even more competitive than traditional solar cells.


  1. Branker, K. et al. Renewable Sustainable Energy Rev. 2011, 15, 4470.
  2. Yang, W. S. et al. Science, 2015, 348, 1234.
  3. Snaith, H. J. Phys. Chem. Lett. 2013, 4, 3623.
  4. Serrano-Lujan, L. et al. Energy Mater. 2015, 5, 150119.
  5. Dabini, D. Phys., 2015, 6, 3546.
  6. Espinosa, N. et al. Adv. Energy Mater. 2015, 5, 1.
  7. Kadro, J. M. et al. Energy, Environ. Sci. 2016, 9, 3172.


Green Chemistry Principle #7: Use of Renewable Feedstocks

By Trevor Janes, Member-at-Large for the GCI

7. A raw material or feedstock should be renewable rather than depleting whenever technically and economically practicable.

In Video #7, Yuchan and Ian help us understand what a raw material or feedstock is, and why we need to choose feedstocks which are renewable.

They use CO2 as an example of a feedstock which plants convert into sugar via photosynthesis. We humans use this sugar as our own feedstock for many different delicious things, including cookies! Yuchan and Ian explain that for a feedstock to be renewable, it must be able to be replenished on a human timescale, whereas depleting feedstocks take much longer to be replenished, and are being used up at a faster rate by human activity.

Many common feedstocks are depleting, such as petroleum and natural gas. The petrochemical industry uses petroleum and natural gas as feedstocks to make intermediates, which are later converted to final products that people use, such as plastics, paints, pharmaceuticals, and many others.

An example of a renewable feedstock is biomass, which refers to any material derived from living organisms, usually plants. In contrast to depleting feedstocks like petroleum, we can much more easily grow new plants once we use them up, and maintain a continuous supply. If we can use bio-based chemicals to do the same tasks that we currently accomplish using petrochemicals, we move closer to the goal of having a steady, reliable supply of resources for the future.

Existing chemical technology has developed based on using readily available petroleum as feedstock to make a majority of chemicals and end products. However, the chemical technology that enables conversion from biomass into bio-based chemicals into final products people use is not yet as well developed.1 Chemical scientists with various specializations are currently involved in improving our ability to use biomass.2, 3

So, how can we implement the principle of renewable feedstocks on a day-to-day basis? Yuchan and Ian illustrate principle 7 through their choice of solvent. As we explore in the video for principle #5, we choose a solvent for a particular purpose based on properties such as boiling point, polarity, and overall impact on health and the environment. One more aspect to consider is that we can choose to use a solvent based on is its renewability. Tetrahydrofuran (THF) is a useful ether solvent, but it is synthesized industrially from petrochemicals (see below for synthesis), so it isn’t renewable. A close relative of THF is 2-methyl THF. Its structure and properties are very similar to those of THF, but the difference is that 2-methyl THF can be synthesized from bio-based chemicals which are made from renewable feedstocks. So when we substitute 2-methyl THF in for THF, we are putting principle 7 into action.

Synthesis of THF4 vs. synthesis of 2-methyl THF5


The synthesis of THF.

An early step in the industrial production of THF involves reaction of formaldehyde with acetylene to make 2-butyne-1,4-diol. This intermediate is hydrogenated and cyclised in two more steps to yield THF. The acetylene input is derived from fossil fuels, which again are non-renewable.


The synthesis of 2-methyl THF.

An alternative to THF is 2-methyltetrahydrofuran, which has a very similar structure to THF.  It can be synthesized starting from biomass; after conversion to C5 and C6 sugars and subsequent acid-catalyzed steps, the intermediate levulinic acid can be hydrogenated to yield 2-methyl THF.


  1. “Renewable Feedstocks for the Production of Chemicals” Bozell, J. J. ACS Fuels Preprints 1999, 44 (2), 204-209.
  2. “Conversion of Biomass into Chemicals over Metal Catalysts” Besson, M.; Gallezot, P.; Pinel, C. Chem. Rev. 2014, 114 (3), 1827-1870.
  3. “Transformation of Biomass into Commodity Chemicals Using Enzymes or Cells” Straathof, A. J. J. Chem. Rev., 2014, 114 (3), 1871-1908.
  4. “Tetrahydrofuran” Müller, H. in Ullmann’s Encyclopedia of Industrial Chemistry 2002, 36, 47-54.Wiley-VCH, Weinheim. doi:10.1002/14356007.a26_221
  5. “Synthesis of 2-Methyl Tetrahydrofuran from Various Lignocellulosic Feedstocks: Sustainability Assessment via LCA” Khoo, H. H.; Wong, L. L.; Tan, J.; Isoni, V.; Sharratt, P. Resour. Conserv. Recy. 2015, 95, 174.
Green Polymer Chemistry: Approaches, Challenges, Opportunity

Green Polymer Chemistry: Approaches, Challenges, Opportunity

By Hyungjun Cho, Member-at-large for the GCI

I was recently inspired by an episode of podcast by NPR’s Planet Money called Oil #4: How Oil Got Into Everything. It told the story of Leo Baekeland’s invention of Bakelite, which is the plastic that made many commodities affordable for the masses.

Plastic is made of polymers, and many of the common items we use are made from one or more of these polymers. Examples of these polymers are polystyrene, polymethylmethacrylate, and polyethylene and some examples of common items that contain these polymers are Styrofoam™, Plexiglas®, and plastic bags, respectively. Polymers are synthesized by forming bonds between many molecules of same structure, called monomers.

Conventionally, these monomers are produced from chemicals derived from oil, which is a non-renewable feedstock. Environmentally conscious scientists have been trying to make polymers in a more eco-friendly way. The biggest challenge lies in how we obtain monomers from renewable sources.

There are two main approaches to this challenge. The first approach is to produce currently used monomers, such as styrene, from a renewable source. A literature review by Hernandez et al.1 called this approach bioreplacement. The biggest progress in this


Figure 1. Engineered metabolic pathway to produce styrene from glucose. (1)

approach has been made by engineering the metabolic pathways of bacteria cultures. McKenna et al. 3 have been able to feed glucose to engineered E. coli to produce styrene and release it in the culture medium they are incubating in. The E. coli flask cultures were able to produce styrene to reach concentrations of up to 260 mg/L1,3. Figure 1 shows the metabolic pathway from glucose to styrene.

While this method of producing monomers is promising, there are road blocks that are hindering progress. The biggest issue is toxicity of styrene to the E. coli, which limits the maximum concentration of styrene in the bacterial culture (E. coli can only tolerate up to 300 mg/L styrene1,3). Other challenges that exist with using bacteria include long incubation times, obtaining poor yield of desired product relative to amount of glucose added, and scale up. Looking down the road, these kinds of limitations may prevent this method from being economically and practically viable.

The second approach is called bioadvantage. Polymer chemists take chemicals that are already being produced from renewable feedstock, synthesize polymers, and use said polymers to produce polymer products in hopes of replacing already existing polymer materials. There are many molecules that are being studied for this purpose such as cellulose, starch, anethole, methylene-butyrolactone, and myrcene.


Figure 2. Conventional monomers (styrene, methylmethacrylate, ethylene) and their potentially renewable counterparts. Renewable counterpart monomers tend to be structural analogues of conventional monomers.

During the podcast by Planet Money, research by the Hillmyer group from University of Minnesota was featured. They aim to synthesize eco-friendly polymer using monomers from renewable feedstock (the bioadvantage method). After many failures to produce viable polymer from corn, coconut, orange peels, etc., they were able to develop a polymer synthesized from a menthol derivative obtained from peppermint2.

A critical challenge to bioadvantage polymers is the need for years of study and passing a battery of regulatory tests before they are adopted. The petroleum based polymers that are being used today already have been researched for decades, which allows them to be used easily by industry. By extension, bioadvantage polymers will need to match or exceed their performance in terms of strength, durability, flexibility, and other properties we require from our plastic. Even when industry is willing to allocate resources to adopt eco-friendly polymers, sometimes it’s the consumers that prove to be even less accommodating. We observed this with the biodegradable bag fiasco by Sun Chips.

It should be mentioned that both bioreplacement and bioadvantage polymers are not necessarily biodegradable. Therefore, we should not call them green polymers.

I will conclude with this: I see the impact that plastic has on our daily lives and I see demand for polymers. Being able to make eco-friendly polymers economically will change the world around you, literally. As Planet Money teaches, the world works in a supply-demand swing. When the kinks in the supply side of eco-friendly polymers are fixed, demand for them will present itself. How soon eco-friendly plastics will develop will depend on us. As green chemists, we should see that the biggest impact we might have in the future, will be making eco-friendly polymers.


(1)   Hernández, N.; Williams, R. C.; Cochran, E. W. Org. Biomol. Chem., 2014,12, 2834-2849

(2)   Hillmyer, M. A.; Tolman, W. B. Acc. Chem. Res., 201447 (8), pp 2390–2396

(3)   Mckenna, R.; Nielsen, D. R. Metab. Eng. 2011, 13 (5), 544–554.

UofT Demonstrates its Commitment to Sustainable Chemistry

“We’re very pleased and proud to announce that the Chemistry Department has recently joined the Green Chemistry Commitment (GCC)!” – Dr. Andy Dicks, University of Toronto, Associate Professor


GCI Members Fall 2016

The University of Toronto has recently signed the GCC making us the first school outside of the United States to sign onto this impactful commitment, which now contains 33 colleges and universities. The GCC is overseen by Beyond Benign, a United States not-for-profit organization created by Dr. Amy Cannon and Dr. John Warner, a founder of the principles of green chemistry. Within the GCC, academic institutions collaborate to share resources and know-how in order to positively impact how the next generation of scientists are educated about sustainability issues. Participating departments commit to green chemistry instruction as a core teaching mandate. The aim is to provide undergraduates and graduates with the required understanding to make green chemistry become standard practice in laboratories around the world. This, in turn, ensures that when graduates of the university enter the workforce, they are armed with the knowledge of how to make molecules and processes more sustainable and less toxic by adhering to the Twelve Principles of Green Chemistry.

The GCC unites the green chemistry community around shared goals and a common vision to grow departmental resources to allow a facile integration of green chemistry into the undergraduate laboratories as well as to improve connections with industry which creates job opportunities for sustainability-minded graduates. Their website offers many resources for those interested in reading actual case studies and laboratory exercises, so please click here to visit their website and be informed!

Our chemistry department has already improved the green chemistry content in our undergraduate laboratories by updating the first year courses and upper year synthetic chemistry courses to include various graded questions about the Twelve Principles as well as ensuring the undergraduates are thinking about how they could make their current lab protocols more sustainable. Additionally, students can choose to study the fate of chemicals in our environmental chemistry courses offered. Of course there’s always room to improve, so the Green Chemistry Initiative (GCI), in collaboration with Dr. Andy Dicks, is working on evaluating the undergraduate chemistry curriculum’s current focus on sustainable chemistry and toxicology, in hopes to further improve our undergraduate’s learning experience. The GCI also provides many educational opportunities to department members such as our Seminar Series as well as many outreach opportunities, making our group a driving force in the integration of green chemistry principles to the department. Lastly, the University of Toronto chemistry courses reach thousands of students a year, and by being the first Canadian university to sign this commitment, we are working towards a greener future in Canada!

Thank you for celebrating this very momentous achievement with us!
Karl Demmans, Ian Mallov, Shira Joudan, and Laura Reyes