Boat Antifouling Technology: the problems and the green chemistry solutions!

Boat Antifouling Technology: the problems and the green chemistry solutions!

By Alana Rangaswamy (Vice-President, Dalhousie University Green Chemistry Initiative)

Picture1

The iconic Halifax Ferry is one of many boats to traverse the Harbour every day.

One great part of attending Dalhousie University is living steps away from the ocean. Much of Halifax’s history and development is due to its access to water, both as a naval base and port of call. With the massive amount of boat traffic seen daily by the harbour, marine industries strive to maximize the efficiency of travel. And one major way to do that is preventing small creatures from hitching a ride on your boat, causing drag and lowering the efficiency of your vessel. Enter antifoulants: coatings that kill organisms or otherwise block their ability to stick onto your ship. Antifouling is a necessary technology, but introducing biocidal agents into a marine environment, unsurprisingly, poses many environmental challenges. Let’s take a look at two commonly used antifoulants, their issues, and how scientists have tried to fix them:

Tributyltin 

You may have heard of tributyltin (TBT) as a biocidal agent. TBT is an excellent poison – effectively nonpolar due to its alkyl groups, it’s able to accumulate in organisms, rapidly killing them due to the high toxicity of SnIII. This property makes TBT an extremely effective antifouling agent, however, it easily leaches from boat hull paint into the ocean where it persists due to its high stability. Fortunately, the dangers TBT have been recognized worldwide and use as a biocidal agent has been banned as of 20081. Canada jumped on the bandwagon slightly earlier, with the last TBT-containing paint product registered in 1999.2 With this restriction, the industry is searching for alternatives that are as effective as TBT, without the environmental drawbacks.

Copper

Copper as a bulk metal is naturally antiseptic, promoting the formation of reactive hydroxyl radical species which lead to cell death in living systems.3 Copper has been used on boat hulls since the 1700s, and now usually shows up in paints as its metal oxide4 or as a suspension of copper powder.5 Although copper is less bioavailable than TBT, it persists and continually forms unstable radical species (and can, therefore. wreak ecological havoc) in a marine environment. Since copper is widely considered the new “gold” standard in antifouling, the sheer amount of it present on (and leaching off of) boat hulls today points to a long-term impact.

New Antifouling Tech

Green chemistry and engineering are all about designing cleaner systems that work as well as, or better than, the existing standard. TBT and copper are high bars to clear, but scientists are up to the challenge. As early as 1996, the environmentally benign Sea-Nine antifouling compound had received the Designing Greener Chemistry Award as part of the US EPA’s Presidential Green Chemistry Challenge.6 Sea-Nine is a derivative of isothiazolinone, a 5-membered heterocycle containing nitrogen and sulfur atoms. The compound is acutely toxic to marine organisms at the surface of boats, but biodegrades rapidly in marine environments through a ring-opening mechanism to form non-toxic by-products. Sea-Nine (and its derivatives) is currently present in commercial boat hull paints,7 however, degradation times may vary based on geographical location and local environment8 so our job isn’t done yet.

There are many newer studies in the works. For instance, investigation has been done into using natural products as antifouling agents. Natural products are secondary metabolites produced by microorganisms as a defence mechanism in response to stress. As such, they often have antimicrobial properties, while being naturally biodegradable. For example, 1-hydroxymyristic acid, a simple alpha-hydroxy fatty acid, was isolated from the marine bacterium Shwanella oneidensis. When panels were coated with paint containing the fatty acid, and subsequently immersed in a marine environment, no growth of foulants was observed even after 1.5 years.9 Other studies have added hydrophobic coatings which disrupt the binding interactions between the microorganism and the vessel’s hull, and promote detachment due to the natural flow of the water over the hull.10 Some research has diverted away from chemical modifiers altogether, using microtextures, which remove the flat surfaces required for spores to settle,10 to deter growth. UV-LEDs11 which are mutagenic and cytotoxic at a small scale, have also been used to reduce growth of foulants.

The long history and many methods developed to prevent boat hull fouling demonstrates that this is an important and challenging problem. But many results are promising, and green chemists and engineers are well on their way to solving it.

References:

  1. http://wwf.panda.org/?145704/tributyltin-canned
  2. Health Canada – Consumer Product Safety Registrar

http://pr-rp.hc-sc.gc.ca/ls-re/result-eng.php?p_search_label=antifouling+paint&searchfield1=ACT&operator1=CONTAIN&criteria1=tin&logicfield1=AND&searchfield2=NONE&operator2=CONTAIN&criteria2=&logicfield2=AND&searchfield3=NONE&operator3=CONTAIN&criteria3=&logicfield3=AND&searchfield4=NONE&operator4=CONTAIN&criteria4=&logicfield4=AND&p_operatordate=%3D&p_criteriadate=&p_status_reg=REGISTERED&p_status_hist=HISTORICAL&p_searchexpdate=EXP

  1. Grass, G., Rensing, C., and Solioz, M. Metallic copper as an antimicrobial surface. Environ. Microbiol. 2011, 77, 1541-1547. DOI: 10.1128/AEM.02766-10.
  2. https://www.chemistryworld.com/news/antifouling-coatings-cling-to-copper/3010011.article
  3. http://coppercoat.com/coppercoat-info/antifoul-how-it-works/
  4. https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-1996-designing-greener-chemicals-award
  5. https://www.epaint.com/product/sn-1-antifouling-paint/
  6. Chen, L. and Lam, J. C. W. SeaNine 211 as an antifouling biocide: a coastal pollutant of emerging concern. Environ. Sci., 2017, 61, 68-79. DOI: 10.1016/j.jes.2017.03.040.
  7. Qian, P-Y., Xu, Y. and Fusetani, N. Natural products as antifouling compounds: recent progress and future perspectives. Biofouling, 2009, 26, 223-234. DOI: 10.1080/08927010903470815.
  8. Salta, M. et al. Designing biomimetic antifouling surfaces. Trans. R. Soc. A, 2010, 368, 4729-4757. DOI:10.1098/rsta.2010.0195
  9. https://www.pcimag.com/articles/104484-marine-fouling-prevention-solution-to-use-uv-led-technology

 

 

 

Advertisements
Canada Becomes a Leader in Carbon Capture

Canada Becomes a Leader in Carbon Capture

By Karlee Bamford, Treasurer for the GCI

The attention of international media has been captured by the remarkable success in CO2 sequestration achieved by the Canadian company Carbon Engineering, located in Squamish, British Columbia. Sustainability-related, world-saving initiatives often have an easier sell in the media than, say, incremental advances reported by researchers on equally sustainable academic pursuits (rough, eh?). In this instance the craze over Carbon Engineering’s advances has been amplified by the news of their recent partnerships with household-name energy and oil giants, such as Chevron, BHP, and Occidental Petroleum, in the form of a CAD $68 million investment.  So, what is this incredible advance?

From the success of their pilot plant and the data they’ve accumulated thus far, Carbon Engineering implementation of their technology has achieved capture of The technology in question can be split into two major advances. Referred to as direct air capture, or DAC, the first process developed by Carbon Engineering involves the transfer of gaseous CO2 from ambient air to an absorber fluid, a strongly basic solution of sodium or potassium hydroxide. The transfer process is achieved using an air-liquid contactor, designed and described by the company in 2012,4 that involves an array of fans, pumps, cheap PVC piping and structure, and fluid distributors. These components are fundamentally no different than those commonly found in cooling towers used as heat exchangers for water cooling. However, the orthogonal geometry (Figure 1) of air (atmospheric, ~ 400 ppm CO2) and fluid (the absorber) flow differs significantly, making repurposing of existing cooling tower designs for DAC an inefficient and expensive strategy for CO2 capture.

Picture

Figure 1. Commercial realization of air-fluid contactor designed by Carbon Engineering. M = Na or K. Image obtained from CanTech Letter and modified.5

The CO2 taken up by the alkaline absorber fluid is converted to carbonate (CO32-) salts and can be precipitated from the aqueous solution by treatment with calcium hydroxide to give calcium carbonate pellets. The captured CO2 can thus be stored as calcium carbonate or can be cleanly regenerated as pure CO2 gas, with elimination of a CaO , at high temperatures (650 °C) for commercial resale. The byproduct CaO may even repurposed by conversion back to Ca(OH)2 in a lime slaker, using water.1 Carbon Engineering has been piloting this process at their facility in Squamish since 2015, according to their website, after having tested a smaller prototype from 2010 and published the performance results in 2013.6 At the time of Carbon Engineering’s founding and until as recently as 2018, no commercial-scale air capture systems had been developed, which was a direct result of the anticipated inefficiency of CO2 capture using conventional cooling tower designs.4 Undeterred, Carbon Engineering has proven otherwise with their innovative use of cross-flow geometry.

The second break-through technology from Carbon Engineering is their patented Air To FuelsTM process, which they’ve been piloting since 2017. Taking the stored CO2 from their DAC process, Carbon Engineering has successfully produced a clean, sulfur-free, source of hydrocarbon fuel that requires no further modification for consumer consumption. The process involves passing the regenerated CO2 gas through a reactor containing hydrogen (H2) gas to generate synthesis gas (syn-gas), a mixture of CO and . The syn-gas is then passed through a Fischer-Tropsch reactor where the synthetic hydrocarbon fuel is thermally generated over a heterogenous base-metal catalyst (e.g. iron, cobalt, nickel).7

The technologies have been developed by the research groups of founder and U of T alumnus Prof. David Keith. Prof. Keith is currently faculty at Harvard University in the School of Engineering and Applied Sciences. To date, the company has filed 13 patents and produced numerous publications describing their innovations. According to media reports,8 recent multimillion-dollar investments will allow their and the company has already signed a memorandum of understanding with Squamish First Nations about their intentions.9

One of the most attractive aspects of the DAC and Air to FuelsTM technology is location. Plants could, hypothetically, be built anywhere, as CO2 is well mixed in the atmosphere and Carbon Engineering’s technology does not require that CO2 capture occur at the point of CO2 generation as in, for example, CO2-scrubbers used in exhaust systems.

However, with the excitement surrounding Carbon Engineering’s projected ability to capture CO2 at low cost and high volume, controversy has inevitably been close to follow. The interest from large oil corporations in this technology may not be as principled in sustainability as it appears but driven in part by their need for large volumes of CO2 for so-called green fracking (hydraulic fracturing). Supporting further oil extraction in this way goes completely counter to the need for elimination of emissions that the 2018 Intergovernmental Panel on Climate Change (IPCC) report clearly indicates must accompany advances in carbon capture and storage.10 Still, perhaps the positives outweigh the negatives in this instance. This very week, Environment and Climate Change Canada reported that Canada is warming at twice the rate of the rest of the globe.11 The need for efficient technologies to address climate change has never been more immediate. Fortunately, Carbon Engineering is not alone: at least two other companies with commercial plans for CO2 capture have started in Switzerland (Climeworks)12 and the USA (Global Thermostat).13 Whether the Canadian solution is adapted worldwide will depend not only upon Carbon Engineering, but also upon how these alternative approaches evolve.  For once, it is probably best not to pick a team to cheer for but, instead, hope that each country’s company develop a complimentary capture strategy to address the international dilemma that is climate change.

References:

  1. Keith, D. W.; Holmes, G.; St. Angelo, D.; Heidel, K., Joule 2018, 2, 1573-1594.
  2. American Physical Society. Direct Air Capture of CO2 with Chemicals: A Technology Assessment for the APS Panel on Public Affairs. June 1, 2011 https://www.aps.org/policy/reports/assessments/upload/dac2011.pdf ; accessed April 24, 2019.
  3. Carbon Engineering, https://carbonengineering.com/ .
  4. Holmes, G.; Keith, D. W., Trans. R. Soc. A 2012, 370, 4380-403.
  5. Artist’s rendition of a commercial scale Carbon Engineering contactor, CanTech Letter. https://www.cantechletter.com/2016/10/squamish-b-c-s-carbon-engineering-begins-scale-co2-capture-new-deal/ ; accessed April 4, 2019.
  6. Holmes, K. Nold, T. Walsh, K. Heidel, M. A. Henderson, J. Ritchie, P. Klavins, A. Singh and D. W. Keith, Energy Procedia, 2013, 37, 6079-6095.
  7. Heidel, Keton et al. Method and system for synthesizing fuel from dilute carbon dioxide source. WO2018112654A1, 2017.
  8. BBC News, Matt McGrath. Climate change: ‘Magic bullet’ carbon solution takes big step. April 3, 2019 https://www.bbc.com/news/science-environment-47638586 ; accesed April 3, 2019.
  9. CBC News, Angela Sterritt. In fight to combat climate change, Squamish Nation joins forces to capture carbon. November 29, 2018. https://www.cbc.ca/news/canada/british-columbia/in-fight-to-combat-climate-change-squamish-nation-joins-forces-to-capture-carbon-1.4924017 ; accesesd April 4, 2019.
  10. Intergovernmental Panel on Climate Change 2018 Summary for Policy Makers, Global Warming of 1.5 °C. https://www.ipcc.ch/site/assets/uploads/sites/2/2018/07/SR15_SPM_version_stand_alone_LR.pdf ; accessed April 4, 2019.
  11. Environment and Climate Change Canada, Canada’s Changing Climate Report, April 1, 2019. https://www.nrcan.gc.ca/environment/impacts-adaptation/21177 ; accesed April 4, 2019.
  12. Climeworks, http://www.climeworks.com/
  13. Global Thermostat, https://globalthermostat.com/
The Future of Sustainability in the Younger Generations’ Hands

The Future of Sustainability in the Younger Generations’ Hands

By Alex Waked, Co-chair for the GCI

In the last couple decades, there has been an increasing focus on developing sustainable practices in society to reduce our environmental impact. Probably the most notable effort in this endeavour is the signing of the Paris Agreement within the United Nations Framework Convention on Climate Change, in which 194 states and the European Union have set goals to reduce the global carbon footprint to reasonable levels.

As we progress forward, there will be a need to propagate this mindset to the coming generations. Fortunately, I don’t think there will be too much difficulty in achieving this. A growing number of schools have been instituting environmental- and sustainability-related courses in their curricula. In my opinion, this strategy has been the most effective in conveying the importance of being conscious of any consequences of our actions and learning how to improve.

In the last few years, many of the chemistry courses at the University of Toronto have incorporated green chemistry and safety modules in both the laboratory and theory sections of the courses. The number of factors that we now consider when designing experiments is much larger than in the past. For instance, are the molecules we’re synthesizing going to be very toxic? Can they be safely disposed of? Do we use harmful substances or solvents during the experiment? How much chemical waste is produced?

Picture1

Figure 1. Graphic of the 12 Principles of Green Chemistry, which currently play an important role in designing safe and environmentally benign chemical processes.1

These are all questions that have traditionally been overlooked in the past. However, the description of the 12 Principles of Green Chemistry by Anastas and Warner in 19982 was a huge and essential step forward in the current direction we’re heading of thinking about chemistry from a sustainability and safety perspective. Many student-led groups and schools are now taking initiative in this endeavour.

The earlier and more the students are taught about these topics, the greater the chance it will have of the students developing genuine interests in them. In June of this year, the University of Toronto Schools held their first Sustainability Fair, in which grade 8-9 students participated in a science fair-like event where they worked on sustainability-related projects.

Picture2

Figure 2. Examples of posters at the University of Toronto Schools’ Sustainability Fair in June 2018.3

The GCI was invited to participate in listening to the students’ presentations describing their projects and to give any advice and encouragement to them; three of us, myself included, attended it. I would say there were at least 40 projects in total. These are just a few examples of some the projects:

  • Calculating how much water was saved by reducing shower time over a 2-week period
  • Collecting and recycling e-waste (any old electrical parts) that would traditionally be thrown away in the garbage
  • Calculating the reduction of carbon footprint by biking to work or school instead of driving

There were two things that really stood out to us: one being the range of topics (water reduction, carbon footprint reduction, recycling plastics and electronic waste, and minimizing food waste), and two being the genuine enthusiasm and interest of the students in their projects.

These are the students that will develop into people that will have important leadership roles in society in the future. The prospect of this is what excites me and gives me confidence that the future generations will continue to propel society forward in terms of being even more environmentally conscious and actually walk the walk, and not only talk the talk!

References:

  1. The Green Chemistry Initiative website. Accessed September 13, 2018. <http://greenchemuoft.ca/resources.php&gt;
  2. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice, Oxford University Press: New York, 1998, p. 30.
  3. Obtained with permission of the University of Toronto Schools.

 

ACS Summer School on Green Chemistry and Sustainable Energy 2018

ACS Summer School on Green Chemistry and Sustainable Energy 2018

By Kevin Szkop and Rachel Hems

The Colorado School of Mines in Golden, CO is a wonderful campus with cutting-edge facilities and a great place to spend a week with 60 young scientists interested in green chemistry. This is where the ACS Summer School on Green Chemistry and Sustainable Energy was held from July 10 – 17. The group consisted of chemists and chemical engineers from North and South America, all with unique perspectives, experiences, and attitudes towards sustainability. Below is a photo of our awesome class!

Picture1

The 2018 ACS Summer School on Green Chemistry and Sustainable Energy class

The program consisted of technical and professional development sessions. A highlight was a life cycle assessment group project and presentation, led by Prof. Philip Jessop from Queen’s University. During Professor Jessop’s lectures, we learned how to think about the “greenness” of a process, and how this often-nebulous concept is best used as a comparative tool. While every process likely has downfalls, using the green chemistry principles and metrics allowed us to think critically about which process has the least downfalls, and how to address these in our work. The assignment included a group project, during which groups of students had to evaluate the merits and drawbacks of 5 synthetic routes to the same product. In this context, we learned that it is not only the reagents that go into a flask, but everything that happens behind the scenes, including shipping of reagents, the type of waste generated, amount of energy consumed, and much, much more. As a synthetic chemist (Kevin), it really made me think about solvent consumption and work up techniques in my own work!

In addition to learning about green chemistry and sustainable energy, there were some great professional development lectures and activities. Dr. Nancy Jenson, the program manager for the Petroleum Research Fund at the ACS, gave an engaging talk on tips for writing research proposals and common mistakes that are made. While she gave examples from her experience at the Petroleum Research Fund, there were many lessons that could be applied to any type of proposal writing.

Another great professional development lecture was given by Joerg Schlatterer from the American Chemical Society. He gave an overview of the ACS’s many resources for young chemists, such as the Chem IDP website for career planning, workshops for prospective faculty organized by the Graduate & Postdoctoral Scholars Office, and the new Catalyzing Career Networking program at ACS National Meetings. As part of the career planning case study, we took some time to make some SMART goals for ourselves for the next two years. I (Rachel) found it’s really helpful to have others share their goals and give suggestions for yours to make them the SMARTest they can be!

Picture2

Rafting down Clear Creek

Of course, we also had time to have fun! On the Saturday (also Rachel’s birthday!) we went white water rafting on Clear Creek. The river is mountain fed, so it was very cold, but it was a beautiful warm and sunny day! We had a great time rafting down the river, with a quick stop to jump in for a swim. It was a great way to spend my birthday! Throughout the week-long summer school, there was a decent amount of free time to enjoy the sunshine and the sights around Golden. Some of the fun things we got to do were swim in and raft down the river that goes through ‘downtown’ Golden, an early morning hike up the South Table Mountain, tour the Coors Brewery, and get to know all the other awesome chemists!

Picture3

Kevin and Rachel enjoying the Golden nightlife after a long day of learning!

We highly recommend attending this summer school. It is a great opportunity to learn and to meet great people who care about sustainable chemistry! Read more about past GCI members that have attended the ACS Summer School in 2014 and  2017.

More information on the summer school and how to apply can be found online here.

Embodied Energy and Solar Cells

Embodied Energy and Solar Cells

By Devon Holst, Member-at-Large for the GCI

Embodied energy is the sum of all energy consumed in the production of goods and services. Knowing the amount of energy something ‘embodies’ is useful when assessing the environmental impact of comparable goods and services as well as assessing the utility of technologies that produce or save energy. If a device intended to save energy embodies more energy than it will save over the entirety of its use, the product is considered to be unfavourable. A net energy loss would be the result of its application.

It is important to consider the embodied energy of renewable energy technologies to ensure there is a net energy gain. I am going to follow the production process of silicon solar cells as an example of how energy can be embodied into a product. To be effective, the embodied energy of a solar cell must be less than the total energy it produces. There are many processing steps needed to assemble a solar cell where the embodied energy should be kept to a minimum. Some of the largest sources of embodied energy in silicon solar cells are described below.

Devon_blog 1

Silicon Processing (Additional embodied energy: 460 kWh/kg)

Carbothermic reduction of quartz sand (silicon dioxide) is used to produce metallurgical grade silicon. This process consumes 20 kWh/kg of metallurgical grade silicon produced. Metallurgical grade silicon must then be further refined to electronic grade silicon through a reaction with hydrochloric acid at 300 oC followed by treatment with hydrogen gas at 1100 oC. This process consumes 100 kWh/kg of electronic grade silicon. This silicon is then melted at 1400 oC and crystallized, consuming 290 kWh/kg of silicon single crystal. This form of silicon is suitable for use in a solar cell. After accounting for losses of material during each step, these processes embody 460 kWh of energy into each kg of silicon single crystal.1

Solar Cell Production (Additional embodied energy: 120 kWh/m2)

The single crystal of silicon is sliced into wafers with a multiwire saw resulting in a 40% to 50% loss as dust. Following this, a sequence of high temperature diffusion, oxidation, deposition, and annealing steps are performed. This adds 120 kWh/m2 ­­­of embodied energy to the solar cell.1

Module Assembly (Additional embodied energy: 190 kWh/m2)

A module consisting of a glass front panel, an encapsulant, the solar cell, copper ribbon, a foil back cover, and an aluminum channel is then assembled. 190 kWh/m2 of embodied energy is added during assembly.1

Support Structure (Additional embodied energy: 200 – 500 kWh/m2)

The module is then typically installed in a field or on a rooftop. In a field, the module needs to be supported by concrete, cement, and steel. Construction and materials add 500 kWh/m2 of embodied energy. Rooftops have an existing support structure reducing the embodied energy of this aspect to 200 kWh/m2.1

Miscellaneous Components

Beyond the former sources of embodied energy there are many other components in an operational solar cell. An inverter, wiring, and a battery are a few examples of these components. Depending on the components needed, this will add a variable amount of embodied energy.1

Devon_blog2Emerging technologies such as perovskites and organic solar cells often have much lower embodied energies than their silicon counterparts. Material processing methods and the amount of material necessary to produce a solar cell are a couple of the major factors that account for the difference in embodied energy of these technologies.1,2 There are, however, many other factors that make a solar cell viable for large scale energy production which when considered in aggregate currently favour silicon solar cells. It is likely that multiple solar energy technologies will thrive in the future as each has unique characteristics making one more applicable to a given situation than another.1,3

The energy payback time of a given solar cell is calculated by dividing embodied energy by energy output per unit time. This is the amount of time a solar cell must operate before it generates the same amount of energy as its embodied energy. Silicon solar cells have a 1.65 to 4.12 year energy payback time, while some organic solar cells and perovskites have energy payback times of less than half a year.4,5

Embodied energy is part of an even broader picture. A picture that captures the energy used to recycle or dispose of something and the energy associated with environmental impacts incurred through goods and services in any way. The picture is complex, but a deep understanding of it is necessary in order to make decisions that are conscious of the future.

I wonder how much energy I embody…

References:

1) Nawaz, I.; Tiwari, G. N., Embodied energy analysis of photovoltaic (PV) system based on macro- and micro-level. Energy Policy 2006, 34 (17), 3144-3152.

2) Anctil, A.; Babbitt, C. W.; Raffaelle, R. P.; Landi, B. J., Cumulative energy demand for small molecule and polymer photovoltaics. Progress in Photovoltaics: Research and Applications 2013, 21 (7), 1541-1554.

3) Snaith, H. J., Perovskites: The Emergence of a New Era for Low-Cost, High-Efficiency Solar Cells. The Journal of Physical Chemistry Letters 2013, 4 (21), 3623-3630.

4) Espinosa, N.; Hosel, M.; Angmo, D.; Krebs, F. C., Solar cells with one-day energy payback for the factories of the future. Energy & Environmental Science 2012, 5 (1), 5117-5132.

5) Gong, J.; Darling, S. B.; You, F., Perovskite photovoltaics: life-cycle assessment of energy and environmental impacts. Energy & Environmental Science 2015, 8 (7), 1953-1968.

Image Sources:

  1. Solar panels (https://commons.wikimedia.org/wiki/File:SolarparkTh%C3%BCngen-020.jpg)
  2. Embodied energy (http://www.paveshare.org/library/embodied-energy)
ACS Summer School on Green Chemistry and Sustainable Energy 2017

ACS Summer School on Green Chemistry and Sustainable Energy 2017

By Samantha Smith, Yuchan Dong, and Shira Joudan

Yuchan Dong, who previously studied in China, had begun to miss life with roommates while in Canada. She reminisced about how you could talk about your lives late into the night, and spend meals chatting with friends in the cafeteria. “Luckily, at the ACS summer school, [she] got the chance to experience such life again and got to know a lot people who share same interests.” The summer school brought us back to the more carefree times of our undergraduate lives. Living in dormitories, sharing a floor with fifty-two other highly educated students, sharing every meal with our newly-formed friends, and even tackling homework assignments were just like the “good old days”. The level of diversity strengthened the value of peer-networking and real friendships were made throughout the week.

ACS Summer School blog1

The week wasn’t just filled with relaxing chats in the Colorado sun; that was merely how we spent our free time. The days were jam-packed with riveting lectures during the day, assignments in the evening, and getting to know the local Golden beers at night (which was obviously a duty of ours as tourists). We also had the chance to take in the local scenery with hikes and whitewater rafting.

The ACS summer school on green chemistry is a competitive program offered to graduate students, post-doctoral fellows, and industry members every year in Golden, Colorado. Hosted by the Colorado School of Mines, the program consists of five days of lectures from green chemistry and sustainable energy experts, two poster sessions, a whitewater rafting trip, and lots of opportunity for networking. This program teaches global sustainability challenges with a focus on sustainable energy. The ACS Summer School is free of charge for successful attendees, including travel, accommodation on campus, and meals.

ACSblog5_IMG_6689

Samantha, Yuchan, and Shira at the ACS Summer School

Jim Hutchison, a professor at the University of Oregon, spoke about how his department has completely reformatted their undergraduate chemistry curriculum to contain green and sustainable chemistry, something that particularly sparked Shira’s interest as lead of GCI’s Education Subcommittee. Bill Tolman, Chair of the University of Minnesota Chemistry Department, shared how students successfully cultivated the safety culture within his department. This had inspired Samantha to create new initiatives within our chemistry department. Queens University’s Professor Philip Jessop taught us about Life-Cycle Analysis (LCA) and assigned us multiple processes for which we calculated the gate-to-gate LCA. Mary Kirchhoff and David Constable from ACS gave talks on green chemistry and ACS resources, many of which would be useful to other departments. The format of the summer school allowed plenty of time to chat with the guest lecturers during coffee breaks, lunches, and poster sessions.

Many real-world issues were discussed. The worldwide energy usage and sources of energy were a main topic of discussion, as was the use of alternative sources. We were blown away by how multi-disciplinary green chemistry is, and we were enlightened on how we need experts in all fields to successfully create sustainable chemistry. We learned that to be able to effectively tackle environmental issues we need great synthetic chemists, whether they specialize in organic, materials or catalysis, as well as analytical chemists, engineers, environmental chemists, and toxicologists. We also need effective entrepreneurs and lobbyists.

Nearing the end of the summer school, a large group of us hiked up Tabletop mountain to get the most amazing view of the valley. A warm feeling of appreciation towards the summer school for bringing us out of the isolation of individual research in the busy city life was shared. We would like to thank ACS for giving us the chance to attend this amazing week. This experience has truly been beneficial to us, and we plan to use the knowledge gained during the week in our own studies as well as pass this knowledge on to our coworkers at the University of Toronto.

ACS Summer School blog 4_image2

Tabletop mountain in Golden, CO

We highly encourage anyone interested in green chemistry and sustainability to attend this beneficial program. Application deadlines are early in the year and submitted online. The application consists of the applicant’s CV, unofficial transcript, letter of nomination from faculty advisor or another faculty member, and a one-page essay describing your interest in green chemistry and sustainability as well as how it will benefit the applicant.

Recycling Perovskite Solar Cells

Recycling Perovskite Solar Cells

By Judy Tsao, Member-at-Large for the GCI

Solar energy is arguably the most abundant and environmentally friendly source of energy that we have access to. In fact, crystalline silicon solar cells have been employed in parts of the world at a comparable cost to the price of electricity derived from fossil fuels.1 The large-scale employment of solar cells, however, remains challenging as the efficiency of existing solar cells still needs to be improved significantly.

An important recent breakthrough the field of solar cells is the use of perovskite solar cells (PSC), which includes a perovskite-structured compound as the light-harvesting layer in the device (Figure 1). Perovskite is a name given to describe the specific 3-D arrangement of atoms in such materials. Even though the first PSC was reported only in 2009, its power conversion efficiency (PCE) has already been reported to exceed 20%, a milestone in the development of any new solar cells which typically takes decades of optimization to achieve.2

judy-blog-1

Figure 1. Thin-film perovskite solar cell manufactured by vapour deposition (photo credit: Boshu Zhang, Wong Choon, Lim Glenn & Mingzhen Liu)

PSC has several advantages compared with traditional solar cells, including low weight, flexibility, and low cost.3 There are, however, several challenges that must be overcome before PSC can be brought to the market. The most common PSC to date includes CH3NH3PbI3 and related materials, which contain soluble lead (II) salts that are toxic and strictly regulated.

Interestingly, there has been a consensus in the literature that the lead content in the perovskite layer is not actually the main issue in the environmental impact of PSC production.4 Part of the reason for this conclusion is simply that the thickness of perovskite layer required would amount to less than 1000 mg of lead in one square meter of material. This value is only modest compared to lead pollution from other human sources such as lead paints or lead batteries.5

The main environmental concerns regarding PSCs appear to lie in the use of gold and high temperature processes during the manufacturing of the devices.6 It has thus been suggested that, in order to reduce the environmental impact of PSCs, recycling of raw materials is very important. In a recent study by Kadro et al., 7 a facile protocol for the recycling of perovskite solar cell was developed. The entire procedure takes place at room temperature and takes less than 10 minutes (Figure 2).

judy-blog-2

Figure 2. Schematic process for recycling PSC components [7].

As it turns out, components of a fully assembled PSC can be extracted by sequentially placing the device in different solvents. Step 1 of the procedure uses chlorobenzene to remove the gold layer, while step two uses ethanol to dissolve CH3NH3I. This then leaves PbI2 to be the only component remaining on the device, which can be removed by just a few drops of N,N-dimethylformamide. It is also worth noting that the recycled materials can be fabricated into a complete PSC again without significant drop in performance.

Even though the discovery of PSC has only been made less than a decade ago, its potential in applications in photovoltaics has been underlined by numerous studies. It is especially gratifying to see that the environmental impacts of such devices are already under active research before PSCs are introduced to the market. While these studies have demonstrated that PSCs have low environmental impacts when properly recycled, there are other challenges still facing researchers in this field. In particular, the short lifetime of such devices needs to be improved to match that of traditional silicon-based solar cells. Nevertheless, the facile method of recycling PSCs without compromising the performance will certainly make them even more competitive than traditional solar cells.

References:

  1. Branker, K. et al. Renewable Sustainable Energy Rev. 2011, 15, 4470.
  2. Yang, W. S. et al. Science, 2015, 348, 1234.
  3. Snaith, H. J. Phys. Chem. Lett. 2013, 4, 3623.
  4. Serrano-Lujan, L. et al. Energy Mater. 2015, 5, 150119.
  5. Dabini, D. Phys., 2015, 6, 3546.
  6. Espinosa, N. et al. Adv. Energy Mater. 2015, 5, 1.
  7. Kadro, J. M. et al. Energy, Environ. Sci. 2016, 9, 3172.